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1 Introduction

In a curved spacetime there is, in general, no globally conserved energy-momentum.
Aside from the case of scalars like electric charge, tensors defined in different tangent
spaces cannot be added in nonflat spacetime.

However, if we are willing to drop the requirement that all our equations be tensor
equations, then it is possible to define a globally conserved energy-momentum. Unlike a
tensor equation, the form of the conservation laws we derive will change depending on
the coordinate system. However, that makes them no less valid. Consider, for example,
the three-dimensional equation ∇ · B = 0 and its integral form,

∮

dS · B = 0. When
written in Cartesian coordinates these equations have an entirely different form than
when they are written in spherical coordinates. However, they are equally correct in
either case.

The approach we will follow is to derive a conserved pseudotensor, a two-index
object that transforms differently than the components of a tensor. Unlike a tensor, a
pseudotensor can vanish at a point in one coordinate system but not in others. The
connection coefficients are a good example of this, and the stress-energy pseudotensors
we construct will depend explicitly on the connection coefficients in a coordinate basis.

Despite this apparent defect, pseudotensors can be quite useful. In fact, they are
the only way to define an integral energy-momentum obeying an exact conservation law.
Moreover, in an asymptotically flat spacetime, when tensors can be added from different
tangent spaces, the integral energy-momentum behaves like a four-vector. Thus, we can
use a pseudotensor to derive the power radiated by a localized source of gravitational
radiation.
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2 Canonical Stress-Energy Pseudotensor

The stress-energy tensor is not unique. Given any T µν such that ∇µT
µν = 0, one may

always define other conserved stress-energy tensors by adding the divergence of another
object:

T µν → T µν + ∇λS
µνλ where Sµνλ = −Sµλν . (1)

Clearly the stress-energy tensor need not even be symmetric.
Recall the equation of local stress-energy conservation:

∇µT
µ
ν = (−g)−1/2∂µ

(√
−gT µ

ν

)

− Γλ
νµT

µ
λ = 0 . (2)

Because of the Γ terms, Gauss’ theorem does not apply and the integral over a volume
does not give a conserved 4-vector.

However, as we will see, it is possible to define a pseudotensor τµ
ν whose conservation

law is ∂µ(
√−gτµ

ν) = 0 instead of ∇µτ
µ
ν = 0. The two equations are identical in flat

spacetime but the first one can be integrated by Gauss’ law while the second one cannot.
Moreover, there are many different conserved stress-energy pseudotensors, just as there
are many different conserved stress-energy tensors.

This section will show how to construct conserved stress-energy pseudotensors and
tensors, illustrating the procedure for scalar fields and for the metric. The key results
are given in problem 2 of Problem Set 7.

2.1 Stress-energy pseudotensor for a scalar field

We begin with a simple example: a classical scalar field φ(x) with action

S[φ(x)] =
∫

L(φ, ∂µφ) d4x . (3)

The Lagrangian density depends on φ and its derivatives but is othewise independent
of the position. In this example we suppose that L includes no derivatives higher than
first-order, but this can be easily generalized. Note that if S is a scalar, then L must
equal a scalar times the factor

√−g which is needed to convert coordinate volume to
proper volume. We are not assuming flat spacetime — the treatment here is valid in
curved spacetime.

Variation of the action using δ(∂µφ) = ∂µ(δφ) yields

δS =
∫

[

∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µ(δφ)

]

d4x

=
∫

{

∂L
∂φ

− ∂µ

[

∂L
∂(∂µφ)

]}

δφ(x) d4x+
∮

surf

∂L
∂(∂µφ)

δφ(x) d3Σµ . (4)
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The surface term comes from integration by parts and is the counterpart of the pδq
endpoint contributions in the variation of the action of a particle. Considering arbitrary
field variations δφ(x) that vanish on the boundary, the action principle δS = 0 gives the
Euler-Lagrange equation

∂µ

[

∂L
∂(∂µφ)

]

− ∂L
∂φ

= 0 . (5)

Now, by assumption our Lagrangian density does not depend explicitly on the co-
ordinates: ∂L/∂xµ = 0. This implies the existence of a conserved Hamiltonian den-
sity. To see how, recall the case of particle moving in one dimension with trajectory
q(t). In this case, time-indepence of the Lagrangian L(q, q̇) implies dH/dt = 0 where
H = q̇(∂L/∂q̇) − L.

In a field theory q(t) becomes φ(x) and there are d = 4 (for four spacetime dimensions)
parameters for the field trajectories instead of just one. Therefore, instead of dH/dt = 0,
the conservation law will read ∂µH

µ = 0. However, given d parameters, there are d
conservation laws not one, so there must be a two-index Hamiltonian density Hµ

ν such
that ∂µHµ

ν = 0. Here, ν labels the various conserved quantities.
To construct the Hamiltonian function one must first evaluate the canonical momen-

tum. For a single particle, p = ∂L/∂q̇. For a scalar field theory, the field momentum is
defined similarly:

πµ =
∂L

∂(∂µφ)
. (6)

In a simple mechanical system, the Hamiltonian is H = pq̇ − L. For a field theory the
Lagrangian is replaced by the Lagrangian density, the coordinate q is replaced by the
field, and the momentum is the canonical momentum as in equation (6).

The canonical stress-energy pseudotensor is defined as the Hamiltonian density
divided by

√−g:
τµ

ν ≡ (−g)−1/2 [(∂νφ)πµ − δµ
νL] . (7)

The reader may easily check that, as a consequence of equation (5) and the chain rule
∂µf(φ, ∂νφ) = (∂f/∂φ)∂µφ+[∂f/∂(∂νφ)]∂µ(∂νφ), the canonical stress-energy pseudoten-
sor obeys

(−g)−1/2∂µ

(√
−gτµ

ν

)

= 0 . (8)

2.2 Stress-energy pseudotensor for the metric

The results given above are easily generalized to an action that depends on a rank (0, 2)
tensor field gαβ instead of a scalar field. Let us suppose that the Lagrangian density
depends only on the field and its first derivatives: L = L(gαβ, ∂µgαβ). (This excludes the
Einstein-Hilbert action, which depends also on the second derivatives of the metric. We
will return to this point in the next section.) The Euler-Lagrange equations are simply
equation (5) with φ replaced by gαβ.
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Because our field has two indices, the canonical momenta have two more indices than
before:

πµαβ =
∂L

∂µ(gαβ)
. (9)

The stress-energy pseudotensor for the metric, hence for the gravitational field, is there-
fore

τµ
ν ≡ (−g)−1/2

[

(∂νgαβ)πµαβ − δµ
νL
]

. (10)

It obeys equation (8).

2.3 Covariant symmetric stress-energy tensor

Given the results presented above, it is far from obvious that there should be a conserved
stress-energy tensor. How does one obtain a well-defined stress-energy tensor that obeys
a covariant local conservation law?

Let us start from the action for the metric, with a Lagrangian density that may
depend on gµν and on any finite number of derivatives. Then, after integration by parts,
one may write the variation of the metric as the functional derivative plus surface terms:

δS[gµν ] =
∫ δS

δgµν

δgµν(x)
√
−g d4x + surface terms . (11)

(As long as we are varying only the metric, we are free to use either gµν or its inverse
gµν . Variations of the two are related by δgµν = −gµαgνβδgαβ.)

Now we use the fact that the action is a scalar, hence invariant under arbitrary
coordinate transformations. We make an infinitesimal coordinate transformation xµ →
xµ − ξµ(x), which transforms the metric components gµν → gµν + ∇µξν + ∇νξµ. Other
tensor fields are also modified by this coordinate transformation: ψ → ψ + Lξψ where
Lξ is the Lie derivative and ψ is any other field (e.g. the electromagnetic potential Aµ).
However, we assume that other fields obey their equations of motion so that δS/δψ = 0
and therefore δψ = Lξψ makes no change to the action. Thus, we obtain

0 = δS =
∫

2
δS

δgµν

∇µξν
√
−g d4x = −

∫

∇µ

(

2
δS

δgµν

)

ξν
√
−g d4x . (12)

Since this must hold for any ξν(x), we obtain ∇µT
µν = 0 with T µν ≡ 2δS/δgµν =

−2gµαgνβδS/δgαβ.
The same derivation, without the requirement that other fields obey their equations

of motion, when applied to the Einstein-Hilbert action implies ∇µG
µν = 0.

Note that the derivation of a conserved stress-energy tensor is quite different from the
derivation of a conserved pseudotensor. However, both rely on the fact of coordinate-
invariance. In the pseudotensor case this arises in the assuption that L depends on
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position only through the fields; ∂µL = 0 at fixed values of the fields and their derivatives.
This led to a set of conserved Hamiltonian densities. In the tensor case, coordinate-
invariance was used to demand that δS = 0 under a diffeomorphism gµν → gµν + Lξgµν ,
with the implication that ∇µ(δS/δgµν) = 0.

One may ask, are the two approaches more directly related? Does one follow from
the other?

Because there are many possible stress-energy tensors and pseudotensors, I am not
sure whether a general relationship holds between them all, except to say that all stress-
energy conservation laws are implied by the field equations. However, in particular cases
the relationship is more straightforward. In the usual derivation of the electromagnetic
stress-energy tensor, for example, one starts with the canonical approach and obtains a
τµ

ν that is not symmetric (e.g. Jackson 1975, section 12.10). A term is then added like
that of equation (1) so as to symmetrize the stress-energy. The result is the same as the
covariant stress-energy −2δS/δgµν . We will consider the case of the gravitational action
in the next section.

3 Schrödinger Action and Stress-Energy Pseudoten-

sor

The Einstein-Hilbert action is linear in the Ricci scalar, which is linear in the second
derivatives of the metric:

16πGSEH[gµν ] =
∫

d4x
√
−g gµνRµν

=
∫

d4x
√
−g gµν

(

∂αΓα
µν − ∂µΓα

αν − γµν

)

, (13)

where
γµν ≡ Γα

βµΓβ
αν − Γα

µνγ
β
αβ . (14)

For convenience we also define γ ≡ √−g gµνγµν . Then, following Dirac (1975), we rewrite
the integrand of the Einstein-Hilbert action:

√
−g gµνRµν = ∂α

[√
−g

(

gµνΓα
µν − gανΓµ

µν

)]

+ Γα
αν∂µ(

√
−g gµν) − Γα

µν∂α(
√
−g gµν) − γ

= ∂αw
α + γ , wα ≡

√
−g

(

gµνΓα
µν − gανΓµ

µν

)

. (15)

The divergence term contributes only a surface term that does not affect the func-
tional derivative. Thus, the Einstein equations follow from a modified action known as
the Schrödinger action (Schrödinger 1950):

SGS[gµν ] =
1

16πG

∫

d4x
√
−g gµνγµν =

∫

d4xLGS(gαβ, ∂µgαβ) (16)
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where γµν is defined in equation (14). Note that γµν is not a tensor, and therefore SGS

is not a scalar. It differs from the Einstein-Hilbert action by a surface term which is
also not a scalar but which makes no contribution to the equations of motion. Thus, the
Schrödinger action has the same functional derivative as the Einstein-Hilbert action:

δSGS

δgµν
= Gµν . (17)

One may regard the Schrödinger action as the Einstein-Hilbert action minus the
second-derivative terms. From the viewpoint of tensors, these terms are crucial because
one can always choose coordinates so that the connection coefficients vanish at a point,
hence γµν = 0 at a point. However, one cannot do this everywhere (unless the spacetime
is globally flat) and therefore one cannot transform SGS away. At most, one can add
boundary terms that have no effect on the equations of motion.

Given our strong emphasis on tensors in general relativity, one may well ask whether
it is valid to use an action that is not a scalar under arbitrary coordinate transformations.
The answer at the classical level is yes, of course, as long as it gives the correct equations
of motion. From this perspective, the Schrödinger action is just as good as the Einstein-
Hilbert action. Moreover, it depends only on the metric and its first derivatives (through
the definition of the connection coefficients in a coordinate basis). As such, it enables us
to construct a stress-energy psuedotensor.

To derive the conserved stress-energy pseudotensor, we follow the approach of Section
2. After some algebra we get the canonical field momentum,

16πG
πµαβ

√−g = Γµαβ − gµ(αgβ)κΓλ
κλ − gαβgµκgλσΓ[κλ]σ , (18)

where the metric is used to raise and lower indices on the connection coefficients: Γαβµ =
gακgβλΓκλµ, etc.

Before giving the stress-energy pseudotensor, we note another relation between the
Einstein-Hilbert and Schrödinger Lagrangians. From equations (15) and (18), we find
16πGgαβ π

µαβ = −wµ and therefore

LEH = LGS − ∂µ

(

gαβ π
µαβ

)

. (19)

Thus, the two Lagrangians are related by a simple transformation equivalent to L →
L − (d/dt)(pq) for the elementary mechanics of a particle in one dimension. This extra
term obviously contributes nothing but boundary terms to the variation of the action.

Now we give the Schrödinger stress-energy pseudotensor, which follows from equation
(10):

16πG τµ
ν = 2gαβΓµ

ακΓ
κ

βν−2gα(µΓλ)
ανΓ

κ
λκ+2gα[µΓ

λ]
αλΓ

κ
νκ−δµ

νg
αβ
[

Γκ
λαΓλ

κβ − Γκ
αβΓλ

κλ

]

.

(20)
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Including all terms in the action (matter plus gravitational), the equations of motion
imply (problem 2 of Problem Set 7)

(−g)−1/2∂µ

[√
−g (τµ

ν + T µ
ν)
]

= 0 (21)

where T µ
ν is the stress-energy tensor of the matter. Equation (21) may be regarded as a

statement of energy conservation for gravitation and matter, since it can be integrated
over a 4-volume bounded by surfaces of constant x0 to give

dPν

dx0
= −

∮

dS ni

√
−g

(

τ i
ν + T i

ν

)

, Pν(x
0) ≡

∫

V
d3x

√
−g

(

τ 0
ν + T 0

ν

)

(22)

where the surface integral is taken at fixed x0 over the surface (with normal one-form ni)
bounding the 3-volume V . Although equations (21) and (22) are not tensor equations,
they are exact in every coordinate system.

4 Gravitational Radiation Emitted Power

We can use the stress-energy pseudotensor to determine the energy flux density of grav-
itational radiation in a calculation similar to the derivation of the Poynting flux for
electromagnetic radiation. The full calculation is not presented here, although we set
it up. We will assume that the gravity waves are weak and the spacetime is nearly
Minkowski. We ignore the non-radiative scalar and vector parts of the linearized metric
and consider only the transverse-traceless part due to gravitational radiation:

ds2 = −dt2 + (δij + 2sij)dx
idxj , si

i = 0 , ∂is
i

j = 0 . (23)

Note that MTW and most other authors write hij = 2sij; I’ve inserted the factor of 2 so
that sij is the strain matrix and not twice the strain. The Minkowksi metric is used to
raise and lower all indices. (See the 8.962 notes Gravitation in the Weak-Field Limit.)

With this metric, the nonzero connection coefficients are

Γ0
ij = Γi

0j = Γi
j0 = ∂tsij , Γk

ij =
1

2
(∂isjk + ∂jsik − ∂ksij) . (24)

Substituting this into equation (20) gives the energy density and energy flux density

16πGτ 0
0 = (∂tsij)

2 + (∂ksij)
2 − 2(∂isjk)(∂jsik) ,

16πGτ i
0 = 4(∂tsjk)(∂jsik) − 2(∂tsjk)(∂isjk) . (25)

The reader may check that, in vacuum where (−∂2
t + ∂2)sij = 0, ∂tτ

0
0 + ∂iτ

i
0 = 0. In

applying quation (21), we use
√−g ≈ 1 in linear theory.
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The stress-energy pseudotensor we have derived is not symmetric. It may be sym-
metrized by adding a derivative term (cf. Jackson 1975, section 12.10):

tµν = τµ
ν +

1√−g ∂λ

(√
−g Sλµν

)

where Sλµν = −Sµλν . (26)

Landau and Lifshitz (1975, section 96) give an alternative procedure for deriving a sym-
metry stress-energy pseudotensor. Their tensor is quite complicated and I don’t know
the Sλµν that transforms it to the Schrödinger pseudotensor. A symmetric stress-energy
pseudotensor is useful because it allows one to formulate a conservation law for angular
momentum. I will not go into that here (see MTW chapters 19 and 20).

Another advantage of the Landau-Liftshitz pseudotensor is the simple form it takes
for a plane gravitational wave:

tµν =
1

32πG
(∂µh

α
β)(∂νh

β
α) . (27)

Consider a plane wave propagating in the 1-direction. The nonzero strain components
are s22 = −s33 and s23. In vacuum, these components are functions of t−x1 and therefore
∂1sij = −∂tsij. It follows immediately that, in the transverse-traceless gauge of equation
(23),

t00 = −t10 = t11 =
1

8πG
ṡ2

ij (28)

where a dot denotes ∂t. In section 36.7 of the text, MTW use this together with the
solution of the wave equation for sij (including the source) to derive the gravitational
radiation power crossing a sphere of radius r. For a nonrelativistically moving source
the results is the famous quadrupole formula, equation (36.23) of MTW.

References

[1] Dirac, P. A. M. 1975, General Theory of Relativity (New York: Wiley).

[2] Jackson, J. D. 1975, Classical Electrodynamics, 2nd Edition (New York: Wiley).

[3] Landau, L. D. and Lifshitz, E. M. 1975, The Classical Theory of Fields (Oxford:
Pergamon Press).

[4] Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1970, Gravitation (San Francisco:
Freeman).

[5] Schrödinger, E. 1950, Space-Time Structure (Cambridge University Press).

8


