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1 Introduction 

These notes present a treatment of geodesic motion in general relativity based on Hamil-
ton’s principle, illustrating a beautiful mathematical point of tangency between the 
worlds of general relativity and classical mechanics. 

2 Geodesic Motion 

Our starting point is the standard variational principle for geodesics as extremal paths. 
Adopting the terminology of classical mechanics, we make the action stationary under 
small variations of the parameterized spacetime path xµ(τ ) → xµ(τ ) + δxµ(τ ) subject to 
fixed values at the endpoints. The action we use is the path length: 

� � 
dxµ dxν �1/2 

S1[x(τ )] = gµν (x) dτ ≡ L1(x, dx/dτ ) dτ . (1)
dτ dτ 

Variation of the trajectory leads to the usual Euler-Lagrange equations 
� � 

d ∂L ∂L 
dτ ∂(dxµ/dτ ) 

− 
∂xµ 

= 0 , (2) 

from which one obtains the equation of motion 

d2xµ 

dτ 2 
+ Γµ 

αβ 

dxα 

dτ 
dxβ 

dτ 
− 

1 
L1 

dL1 

dτ 
dxµ 

dτ 
= 0 . (3) 

The last term arises because the action of equation (1) is invariant under arbitrary

reparameterization. If the path length is taken to be proportional to path length, dτ ∝
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ds = (gµν dx
µdxν )1/2, then L1 = ds/dτ = constant and the last term vanishes, giving the 

standard geodesic equation 

d2xµ dxα dxβ 

+ Γµ
αβ = 0 . (4)

dτ 2 dτ dτ 

It may be shown that any solution of equation (3) can be reparameterized to give a 
solution of equation (4). Moreover, at the level of equation (4), we needn’t worry about 
whether τ is an affine parameter; we will see below that for any solution of equation 
(4), τ is automatically proportional to path length. The full derivation of the geodesic 
equation and discussion of parameterization of geodesics can be found in most general 
relativity texts (e.g. Misner et al 1973, ¶13.4). 

The Lagrangian of equation (1) is not unique. Any Lagrangian that yields the same 
equations of motion is equally valid. For example, equation (4) also follows from 

1 dxµ dxν 

S2[x(τ )] = gµν (x) dτ ≡ L2(x, dx/dτ ) dτ . (5)
2 dτ dτ 

Unlike equation (1), which is extremal for geodesic curves regardless of their parame
terization, equation (5) is extremal for geodesics only when τ is an affine parameter, 
dτ /ds = constant. In other words, τ measures path length up to a linear rescaling. 

p
The freedom to linearly rescale the affine parameter allows us to define τ so that 

µ = dxµ/dτ gives the 4-momentum (vector) of the particle, even for massless particles 
for which the proper path length vanishes. One may easily check that dτ = ds/m where 
m is the mass. 

With the form of the action given by equation (5), the canonical momentum conjugate 
to xµ equals the momentum one-form of the particle: 

∂L2 dxν 

= gµν . (6)pµ ≡ 
∂(dxµ/dτ ) dτ 

The coincidence of the conjugate momentum with the momentum one-form encourages 
us to consider the Hamiltonian approach as an alternative to the geodesic equation. 
In the Hamiltonian approach, coordinates and conjugate momenta are treated on an 
equal footing and are varied independently during the extremization of the action. The 
Hamiltonian is given by a Legendre transformation of the Lagrangian, 

dxµ 

H(p, x, τ ) ≡ pµ − L(x, dx/dτ, τ ) (7)
dτ 

where the coordinate velocity dxµ/dτ must be expressed in terms of the coordinates and 
momenta. For Lagrangian L2 this is simple, with the result 

1 
H2(pµ, x ν , τ ) = gµν (x)pµpν . (8)

2 
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Notice the consistency of the spacetime tensor component notation in equations (6)-
(8). The rules for placement of upper and lower indices automatically imply that the 
conjugate momentum must be a one-form and that the Hamiltonian is a scalar. 

The reader will notice that the Hamiltonian H2 exactly equals the Lagrangian L2 (eq. 
5) when evaluated at a given point in phase space (p, x). However, in its meaning and use 
the Hamiltonian is very different from the Lagrangian. In the Hamiltonian approach, we 
treat the position and conjugate momentum on an equal footing. By requiring the action 
to be stationary under independent variations δxµ(τ ) and δpν (τ ), we obtain Hamilton’s 
equations in four-dimensional covariant tensor form: 

dxµ ∂H2 dpµ ∂H2 
= = . (9)

dτ ∂pµ 
, 

dτ 
− 
∂xµ 

Evaluating them using equation (8) yields the canonical equations of motion, 

κα βλ dxµ 

= gµν pν , 
dpµ 

=
1 ∂gκλ 

pκpλ =
1 ∂gαβ 

g g pκpλ = g βλΓκ
µβ pκpλ . (10)

dτ dτ 
− 
2 ∂xµ 2 ∂xµ 

These equations may be combined to give equation (4). 
The canonical equations (9) imply dH/dτ = ∂H/∂τ . Because H2 is independent of 

the parameter τ , it is therefore conserved along the trajectory. Indeed, its value follows 
simply from the particle mass: 

1µν 2 g pµpν = −m → H2(p, x) = − m 2 . (11)
2 

It follows that solutions of Hamilton’s equations (10) satisfy ds2 = gµν dx
µdxν ∝ dτ 2 , 

hence τ must be an affine parameter. 

L
L

At this point, it is worth explaining why we did not use the original, parameterization-
invariant Largrangian of equation (1) as the basis of a Hamiltonian treatment. Because 
1 is homogeneous of first degree in the coordinate velocity, (dxµ/dτ )∂L1/∂(dx

µ/dτ ) = 
1 and the Hamiltonian vanishes identically. This is a consequence of the parameteriza

tion invariance of equation (1). The parameterization-invariance was an extra symmetry 
not needed for the dynamics. With a non-zero Hamiltonian, the dynamics itself (through 
the conserved Hamiltonian) showed that the appropriate parameter is path length. 

3 Separating Time and Space 

The Hamiltonian formalism developed above is elegant and manifestly covariant, i.e. the 
results are tensor equations and therefore hold for any coordinates and any reference 
frame. However, the covariant formulation is inconvenient for practical use. For one 
thing, every test particle has its own affine parameter; there is no global invariant clock 
by which to synchronize a system of particles. Sometimes this is regarded, incorrectly, 
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as a shortcoming of relativity. In fact, relativity allows us to parameterize the spatial 
position of any number of particles using the coordinate time t = x0 . (After all, time was 
invented precisely to label spacetime events with a timelike coordinate.) An observer 
would report the results of measurement of any number of particle trajectories as xi(t); 
there is no ambiguity nor any loss of generality as long as we specify the metric. 

Our goal is to obtain a Hamiltonian on the six-dimensional phase space {pi, xj } which 
yields the form of Hamilton’s equations familiar from undergraduate mechanics: 

dxi ∂H dpi ∂H 
= = . (12)

dt ∂pi 
, 

dt 
− 
∂xi 

However, unlike undergraduate mechanics, we require that these equations of motion be 
fully correct in general relativity. Their solutions must be consistent with solutions of 
equation (10). We might hope simply to eliminate τ as a parameter, replacing it with t, 
while retaining the spatial components of pµ and xν for our phase space variables. But 
what is the Hamiltonian, and can we ensure relativistic covariance? 

The answer comes from a third expression for the action, regarded now as a functional 
of the 6-dimensional phase space trajectory {pi(t), xj (t)}: 

dxi 

S3[pi(t), x
j (t)] = 2S2 = pµdx

µ = p0 + pi dt . (13)
dt 

Note that S3 is manifestly a spacetime scalar, but that we have separated time and space 
components of the momentum one-form. Our desire to have a global time parameter has 
forced this space-time split. 

Equation (13) is highly suggestive if we recall the Legendre transformation H = 
pidx

i/dt − L (written here for three spatial coordinates parameterized by t rather than 
four coordinates parameterized by τ ). Inverting the transformation, we conclude that 
the factor in parentheses in equation (13) must be the Lagrangian so that S3 = L dt, 
and therefore the Hamiltonian is H = −p0. 

This result is appealing: the Hamiltonian naturally works out to be (minus) the time 
component of the momentum one-form. It is suggestive that, in locally flat coordinates, 
−p0 = p0 is the energy. However, despite appearances, the Hamiltonian is not in general 
the proper energy. Our formalism works for arbitrary spacetime coordinates and is not 
restricted to flat coordinates or inertial frames. We only require that t be time-like so 
that it can parameterize timelike spacetime trajectories. 

Equation (13) with p0 = −H is not useful until we write the Hamiltonian in terms 
of the phase space coordinates and time: H = H(pi, xj , t). We could do this by writing 
L = pµdxµ/dt in terms of xi and dxi/dt, but it is simpler to write p0 directly in terms of 
(pi, xj , t). How? 

A hint is given by the fact that in abandoning the affine parameterization by τ , we 
don’t obtain the normalization of the four-momentum (eq. 11) automatically. Therefore 
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we must add it as a constraint to the action of equation (13). We wish to use the 
1energy integral H2 = 
2 m

2 to reduce the order of the system (eqs. 10). Solving this −
relation for −p0 in terms of the other variables yields the Hamiltonian on our reduced 
(6-dimensional) phase space. 

For this procedure to be valid, it has to be shown that extremizing S3 with respect 
to all possible phase space trajectories {pi(t), xi(t)} is equivalent to extremizing S2 with 
respect to {xi(τ), t(τ)} for τ being an affine parameter. Equivalently, we must show 
that solutions of equations (9) are solutions of equations (9) and vice versa. A proof is 
presented in Section 4.2 below. 

Before presenting the technicalities, we state the key result of these notes, the Hamil
tonian on our six-dimensional phase space {pi, xj }, obtained by solving H2(pi, p0, x

j , t) = 
1 m2 for p0 = −H:
2− 

0i g pi
H(pi, x

j , t) = −p0 = 
g pi 

+
(gij pipj + m2)

+ 

� 
0i

�2 
�1/2 

. (14) 
g00 −g00 g00 

Note that here, as in the covariant case, the conjugate momenta are given by the (here, 
spatial) components of the momentum one-form. The inverse metric components gµν 

are, in general, functions of xi and t. Equation (14) is exact; no approximation to the 
metric has been made. We only require that t be timelike, i.e. g00 < 0, in order to 
parameterize timelike geodesics. 

The next section presents mathematical material that is optional for 8.962. However, 
it is recommended for those students prepared to explore differential geometry somewhat 
further. The application to Hamiltonian mechanics should help the student to better 
understand the mathematics of general relativity. 

4 Hamiltonian mechanics and symplectic manifolds 

The proof that the 8-dimensional phase space may be reduced to the six spatial dimen
sions while retaining a Hamiltonian description becomes straightforward in the context 
of symplectic differential geometry (see Section 4.2 below). Classical Hamiltonian me
chanics is naturally expressed using differential forms and exterior calculus (Arnold 1989; 
see also Exercise 4.11 of Misner et al 1973). We present an elementary summary here, 
both to provide background for the proof to follow and to elucidate differential geom
etry through its use in another context. In fact, we are not ignoring general relativity 
but extending it; the Hamiltonian mechanics we develop is fully consistent with general 
relativity. 

The material presented in this section is mathematically more advanced than Schutz 
(1985). Treatments may be found in Misner et al (1973, Chapter 4), Schutz (1980), 
Arnold (1989), and, briefly, in Appendix B of Wald (1984) and Carroll (1997). 
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We begin with the configuration space of a mechanical system of n degrees of freedom 
characterized by the generalized coordinates qi (which may, for example, be the four 
spacetime coordinates of a single particle’s worldline, or the three spatial coordinates 
only). The configuration space is a manifold V whose tangent space T Vq at each point 
q in the manifold is given by the set of all generalized velocity vectors d�q/dt at q. Note 
that t is any parameter for a curve q(t); we are not restricting ourselves to Newtonian 
mechanics with its absolute time. 

The union of all tangent spaces at all points of the manifold is called the tangent 
bundle, denoted T V . The set T V has the structure of a manifold of dimension 2n. There 
exists a differentiable function on T V , the Lagrangian, whose partial derivatives with 
respect to the velocity vector components defines the components of a one-form, the 
canonical momentum: 

∂L 
� . (15)p ≡ 

∂(d�q/dt) 

To see that this is a one-form, we note that it is a linear function of a tangent vector: 
p�(d�q) = pidqi is a scalar. At each point in the configuration space manifold, the set of 
all �p defines the cotangent space T ∗Vq. (The name cotangent is used to distinguish the 
dual space of one-forms from the space of vectors.) 

The union of all cotangent spaces at all points of the manifold is called the cotangent 
bundle, T ∗V . Like the tangent bundle, the cotangent bundle is a manifold of dimension 
2n. A point of T ∗V is specified by the coordinates (pi, qj ). The cotangent bundle is well 
known: it is phase space. 

Having set up the phase space, we now discard the original configuration space V , 
its tangent vector space T Vq and the tangent bundle T V . To emphasize that the phase 
space is a manifold of dimension 2n, we will denote it M 2n rather than by T ∗V . 

Being a manifold, the phase space has a tangent space of vectors. Each parameterized 
curve γ(t) in phase space has, at each point in the manifold, a tangent vector ξ� whose 
coordinate components are the 2n numbers (dpi/dt, dqj /dt). The phase space also has 
one-forms, or linear functions of vectors. For example, the gradient of a scalar field 
H(pi, qj ) in phase space is a one-form. However, it will prove convenient to denote the 
gradient of a scalar using a new notation, the exterior derivative: dH ≡ �H. In the 
coordinate basis, dH has components (∂H/∂pi, ∂H/∂qj ). In this section, forms will be 
denoted with boldface symbols. 

One must be careful not to read too much into the positions of indices: ∂H/∂pi and 
∂H/∂qi are both components of a one-form in phase space. They may also happen to be 
spacetime vectors and one-forms, respectively, but we are now working in phase space. 
In phase space, pi and qj have equal footing as coordinates. We will retain the placement 
of indices (i, j go from 1 to n) simply as a reminder that our momenta and position 
displacements may be derived from spacetime one-forms and vectors. This way we can 
arrive at physical equations of Hamiltonian dynamics that are tensor equations (hence 
valid for any coordinate system) in both spacetime and phase space. 
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As in spacetime, we define the basis one-forms by the gradient (here, the exterior 
derivative) of the coordinate fields: {dpi, dqj }. We can combine one-forms and vectors 
to produce higher-rank tensors through the operations of gradient and tensor product. 
It proves especially useful to define the antisymmetric tensor product, or wedge product. 
The wedge product of two one-forms α and β is 

α ∧ β ≡ α ⊗ β − β ⊗ α . (16) 

The wedge product of two one-forms gives a 2-form, an antisymmetric (0, 2) tensor. The 
wedge product (tensor product with antisymmetrization) can be extended to produce 
p-forms with p less than or equal to the dimension of the manifold. A p-form is a fully 
antisymmetric, linear function of p vectors. Forms will be denoted by Greek letters. 

Given a p-form α, we can obtain a (p + 1)-form by exterior differentiation, dα. 
Exterior differentiation consists of the gradient followed by antisymmetrization on all 
arguments. For p-form ωp and q-form ωq , the exterior derivative obeys the relation 

d(ωp ∧ ωq ) = dωp ∧ ωq + (−1)pωp ∧ dωq . (17) 

(Here p and q are integers having nothing to do with phase space coordinates.) Note 
that ddω = 0 for any form ω. Any form ω for which dω = 0 is called a closed form. 

Forms are most widely used to provide a definition of integration free from coordinates 
and the metric. Consider, for example, the line integral giving the work done by a force, 
F d�� x. If the force were a one-form θ instead of a vector, and if ξ� were the tangent · 

vector to a path γ (ξ� = d�x/dt where t parameterizes the path), we could write the work 
as θ(ξ� ) or 

γ θ for short. No coordinates are involved until we choose a coordinate 
γ 

basis, and no metric is required because we integrate a one-form instead of a vector with 
a dot product. 

Similarly, a 2-form may be integrated over an orientable 2-dimensional surface. Inte
gration is built up by adding together the results from many small patches of the surface. 
An infinitesimal patch may be taken to be the parallelogram defined by two tangent 

η. The integral of the 2-form ω over the surface σ is 
σ ω(� η) or ω forvectors, ξ� and � ξ, �

σ 
short. 

The spacetime manifold received additional structure with the introduction of the 
metric, a (0, 2) tensor used to give the magnitude of a vector (and to distinguish timelike, 
spacelike and null vectors). A manifold with a positive-definite symmetric (0, 2) tensor 
defining magnitude is called a Riemannian manifold. When the eigenvalues of the metric 
have mixed signs (as in the case of spacetime), the manifold is called pseudo-Riemannian. 

Phase space has no metric; there is no concept of distance between points of phase 
space. It has a special antisymmetric (0, 2) tensor instead, in other words a 2-form. 
We will call this fundamental form the symplectic form ω; Arnold (1989) gives it the 
cumbersome name �the form giving the symplectic structure.� In terms of the coordinate 
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basis one-forms dpi and dqj , the symplectic form is 

ω ≡ dpi ∧ dq i = dp1 ∧ dq 1 + dpn ∧ dq n . (18)+ · · ·

Note the implied sum on paired upper and lower indices. 
One of the uses of the metric is to map vectors to one-forms; the symplectic form 

fulfills the same role in phase space. Filling one slot of ω with a vector yields a one-
form, ω(·, ξ� ). It is easy to show that this mapping is invertible by representing ω in the 
coordinate basis and showing that it is an orthogonal matrix. Therefore, every one-form 
has a corresponding vector. 

There is a particular one-form of special interest in phase space, dH where H(p, q, t) 
is the Hamiltonian function. The corresponding vector is the phase space velocity, i.e. 
the tangent to the phase space trajectory: 

dpi
ω(·, ξ� ) = dpi(·)dq i(ξ� ) − dq i(·)dpi(ξ� ) = 

dqi 
dpi − dq i 

dt dt 
∂H ∂H 

= dH(·) = dpi + dq i . (19)
∂pi ∂qi 

Equating terms, we see that Hamilton’s equations are given concisely by ω(ξ� ) = dH. 
Besides giving the antisymmetric relationship between coordinates and momenta 

apparent in Hamilton’s equations, the symplectic form allows us to define canonical 
transformations of the coordinates and momenta. The phase space components (pi, qj ) 

¯
transform with a 2n × 2n matrix Λ to (pī, q j ). A canonical transformation is one that 
leaves the symplectic form invariant. In matrix notation, this implies ΛT ωΛ = ω. Thus, 
canonical invariance of a Hamiltonian system is analogous to Lorentz invariance in special 
relativity, where the transformations obey ΛT ηΛ = η where η is the Minkowski metric. 

The standard results of Hamiltonian mechanics are elegantly derived and expressed 
using the language of symplectic differential geometry. For example, Arnold (1989, ¶38 
and ¶44D) shows that transformation of phase space induced by Hamiltonian evolution is 
canonical. This implies that the phase space area (the integral of ω, a 2-form) is preserved 
by Hamiltonian evolution. It is easy to show that not only ω but also ω2 ≡ ω ∧ ω 
is a canonical invariant, as is ωp ≡ ω ∧ · · · ∧ ω with p factors of ω, for all p ≤ n. 
(Antisymmetry limits the rank of a p-form to p ≤ n.) Thus, phase space volume is 
preserved by Hamiltonian evolution (Liouville theorem). 

4.1 Extended phase space 

Inspired by relativity, we can absorb the time parameter into the phase space to obtain 
a manifold of 2n + 1 dimensions, denoted M2n+1 and called extended phase space. As 
we will see, this extension allows a concise derivation of the extremal form of the action 
under Hamiltonian motion. 

8 



� � 

� � 

Before proceeding, we should emphasize that the results of the previous section are 
not limited to nonrelativistic systems. Indeed, they apply to the phase space (pµ, xν) 
of a single particle in general relativity where the role of time is played by the affine 
parameter τ . The relativistic Hamilton’s equations (9) follow immediately from equation 
(19). Nonetheless, if we wish to parameterize trajectories by coordinate time (as we must 
for a system of more than one particle), we must show the consistency of the space-time 
split apparent in equation (14). We can do this by re-uniting coordinates and time in 
M2n+1 . 

In M2n, the symplectic form dpi ∧ dqi is the fundamental object. In M2n+1, we must 
incorporate the one-form dt. This is done with a new one-form, the integral invariant 
of Poincaré-Cartan: 

ω ≡ pidq 
i − H(pi, q

j, t)dt . (20) 

(The reader must note from context whether ω refers to this one-form or to the sym
plectic 2-form.) This one-form looks deceptively like the integrand of the action, or 
the Lagrangian. However, it is a differential form on the extended phase space, not a 
function. Once we integrate it over a curve γ in M2n+1, however, we get the action: 

� � B 
� � 

S = ω = pidq
i − H(pi, q

j, t)dt . (21) 
γ A 

The integration is taken from A to B in the extended phase space. 
Now suppose we integrate ω from A to B along two slightly different paths and take 

the difference to get a close loop integral. To evaluate this integral we can use Stokes’ 
theorem. In the language of differential forms, Stokes’ theorem is written (Misner et al 
1973, Chapter 4, or Wald 1984, Appendix B) 

ω = dω (22) 
∂M M 

Here, M is a p-dimensional compact orientable manifold with boundary ∂M and ω is a 
(p−1)-form; dω is its exterior derivative, a p-form. Note that M can be a submanifold of 
a larger space, so that Stokes’ theorem actually implies a whole set of relations including 
the familiar Gauss and Stokes laws of ordinary vector calculus. 

Applying equation (22) to the difference of actions computed along two neighboring 
paths with (qi, t) fixed at the endpoints and using equation (17), we get 

dpi ∧ dq iδS = dω = − dH ∧ dt , (23) 
σ σ 

where σ denotes the surface area in the extended phase space bounded by the two paths 
from A to B. Note the emergence of the fundamental symplectic form on M2n . 
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in M
Now, let us express the integrand of equation (23) in the coordinate basis of one-forms 

2n+1, evaluating one of the vector slots using the tangent vector ξ� to one of the two 
curves from A to B. The result is similar to equation (19): 

dqi ∂H dH ∂H 
dω(·, ξ� ) = 

dt 
− 

∂pi 
dpi + 

dpi ∂H 
dq i + dt . (24)− 

dt 
− 

∂qi dt 
− 

∂t 

The principal of least action states that δS = 0 for small variations about the true path, 
with (qi, t) fixed at the end points. This will be true, for arbitrary small variations, if 
and only if dω(·, ξ� ) = 0 for the tangent vector along the extremal path. From equation 
(24), Hamilton’s equations follow. 

The solution of Hamilton’s equations gives an extended phase-space trajectory with 
tangent vector ξ� being an eigenvector of the 2-form dω with zero eigenvalue. Arnold 
(1989) proves that, for any differentiable function H defined on M2n+1, the two-form 
dω has exactly one eigenvector with eigenvalue zero, (∂H/∂pi, −∂H/∂qi , 1). This is a 
vector field in M2n+1 and it defines a set of integral curves (field lines, to which it is 
tangent) called the �vortex lines� of the one-form ω. The vortex lines are precisely the 
trajectories of Hamiltonian flow, i.e. the solutions of equations (12). 

A bundle of vortex lines is called a vortex tube. From Stokes’ theorem, the circulation 
of a vortex tube, defined as the integral of the Poincaré-Cartan integral invariant around 
a closed loop bounding the vortex tube, is an integral of motion. (This is why ω is called 
an integral invariant.) If the bounding curves are taken to lie on hypersurfaces of constant 

pidqitime, it follows that is also an integral of motion. By Stokes’ theorem, this 
implies that the fundamental form dpi ∧ dqi is an integral invariant. Thus, Hamiltonian 
evolution is canonical and preserves phase space areas and volumes. 

M

p

q

By adding t to our manifold we have partially unified coordinates and time. Can we 
go all the way to obtain a spacetime covariant formulation of Hamiltonian dynamics? For 
the case of single particle motion, the answer is clearly yes. If we write H = −p0 and t = 
0, the integral invariant of Poincaré-Cartan takes the simple form ω = pµdqµ where µ 
takes the range 0 to n. Now dω looks like the symplectic form on M2n+2, except that here 
0 is not a dynamical variable but rather a function on M2n+1 . However, we can promote 
it to the status of an independent variable by defining a new Hamiltonian H �(pµ, qν ) on 

2n+2 such that H � = constant can be solved for p0 to give −p0 = H(pi, qj , q0 = t). A 
simple choice is H � = p0 + H. 

M

Having subsumed the parameter for trajectories into the phase space, we must intro
duce a new parameter, τ . Because ∂H �/∂τ = 0, the solution of Hamilton’s equations in 

2n+2 will ensure that H � is a constant of motion. This is exactly what happened with 
the relativistically covariant Hamiltonian H2 in Section 2 (eqs. 8 and 11). 

The reader may now ask, if the Hamiltonian is independent of time, is it possible to 
reduce the dimensionality of phase space by two? The answer is yes; the next section 
shows how. 
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4.2 Reduction of order 

Hamilton’s equations imply that when ∂H/∂t = 0, H is an integral of motion. In this 
case, phase space trajectories in M2n are confined to the (2n− 1)-dimensional hypersur
face H = constant. This condition may be used to eliminate t and choose one of the 
coordinates to become a new �time� parameter, with a new Hamiltonian defined on the 
reduced phase space. 

This procedure was used in Section 3 to reduce the relativistically covariant 8
dimensional phase space {pµ, xν } with Hamiltonian given by equation (8) to the 6
dimensional phase space {pi, xj } with the Hamiltonian of equation (14). While this 
reduction is plausible, it remains to be proved that the reduced phase space is a sym
plectic manifold and that the new Hamiltonian is given by the momentum conjugate to 
the time coordinate. The proof is given here. 

Starting from the conserved Hamiltonian H(p, q) ≡ H(p0, pi, q
0, qj ) = h with 1 ≤

i, j ≤ n − 1, we assume that (in some region) this equation can be solved for the mo
mentum coordinate p0: 

p0 = −K(Pi, Q
j , T ; h) (25) 

0where Pi = pi, Qi = qi, and T = q . Note that any of the coordinates may be elimi
nated, with its conjugate momentum becoming (minus) the new Hamiltonian. Thus, the 
reduction of order is compatible with relativistic covariance. However, it can be applied 
to any Hamiltonian system, relativistic or not. 

Next we write the integral invariant of Poincaré-Cartan in terms of the new variables: 

ω = p0dq 
0 + pidq 

i − Hdt = PidQ
i − KdT − d(Ht) + tdH . (26) 

Recall that this is a one-form defined on M2n+1 . 
Now let γ be an integral curve of the canonical equations (12) lying on the 2n

dimensional surface H(p, q) = h in the (2n + 1)-dimensional extended phase space 
i{p, q, t}. Thus, γ is a vortex line of the two-form pdq − Hdt = p0dq0 + pidq − Hdt. 

We project the extended phase space M2n+1 onto the phase space M2n = {p, q} by dis
carding the time parameter t. The surface H = h projects onto a (2n− 1)-dimensional 
manifold M2n−1 with coordinates {Pi, Q

j , T}. Discarding t, the integral curve γ projects 
onto a curve γ̄ also in M2n−1 . 

M

The coordinates (Pi, Q
j , T ) = (pi, q

j , q0) locally (and perhaps globally) cover the 
submanifold M2n−1 (the surface H = constant in M2n = {p, q}). We now show that 

2n−1 is the extended phase space for a symplectic manifold with Hamiltonian K. 
We do this by examining equation (26) while noting that the integral curve γ lies on 

the surface H = constant. Clearly the last term in equation (26) vanishes on M2n−1 . 
Next, d(Ht) does not affect the vortex lines of ω because dd(Ht) = 0. (The variation of 
the action is invariant under the addition of a total derivative to the Lagrangian.) But 
the vortex lines of PidQi − KdT satisfy Hamilton’s equations (Sect. 4.1). Thus we have 
proven that reduction of order preserves Hamiltonian evolution. 
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� 

� 

The solution curves γ̄ on M2n−1 are vortex lines of pdq = P dQ − KdT . Thus, they 

in M
are extremals of the integral pdq. In other words, if the Hamiltonian function H(q, p) 

2n+1 is independent of time, then the phase space trajectories satisfying Hamilton’s 
equations are extremals of the integral pdq in the class of curves lying on M2n−1 with 
fixed endpoints of integration. The converse is also true (Arnold 1989): if ∂H/∂t = 0, 
the extremals of the �reduced action� 

� 
pdq = 

� 

∂(d�

∂L 
q/dτ) 

(τ) 
d�q 
dτ 

dτ (27) 
γ γ 

with fixed endpoints, δq = 0, are solutions of Hamilton’s equations in M2n+1 . This is 
known as Maupertuis’ principle of least action. Note that the principle can only be 
implemented if pi is expressed as a function of q and �q so that the integral is a functional of 
the configuration space trajectory. Also, because the time parameterization is arbitrary, 
Maupertuis’ principle determines the shape of a trajectory but not the time (t does not 
appear in eq. 27); in order to determine the time we must use the energy integral. 

These results justify the approach of Section 3. The spacetime trajectories are ex
tremals of equation (13) as a consequence of ∂H2/∂τ = 0 (eq. 8) and Maupertuis’ 

1principle. The order is reduced further by using H2 = 
2 m

2 to solve for −p0 as the new −
Hamiltonian H(pi, xj , t), equation (14). 
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