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1 Introduction

These notes supplement Section 3 of the 8.962 notes “Introduction to Tensor Calculus for
General Relativity.” Having worked through the formal treatment of vectors, one-forms
and tensors, we are ready to evaluate two particularly useful and important examples,
the number-flux four-vector and the stress-energy (or energy-momentum) tensor for a
gas of particles. A good elementary discussion of these objects is given in chapter 4 of
Schutz, A First Course in General Relativity; more advanced treatments are in chapters
5 and 22 of MTW. Some of the mathematical material presented here is formalized in
Section 4 of the 8.962 notes; to avoid repetition we will present the computations here in
a locally flat frame (orthonormal basis with locally vanishing connection) frame rather
than in a general basis. However, the final results are tensor equations valid in any basis.

2 Number-Flux Four-Vector for a Gas of Particles

We wish to describe the fluid properties of a gas of noninteracting particles of rest mass
m starting from a microscopic description. In classical mechanics, we would describe
the system by giving the spatial trajectories xa(t) where a labels the particle and t is
absolute time. (An underscore is used for 3-vectors; arrows are reserved for 4-vectors.
While the position xa isn’t a true tangent vector, we retain the common notation here.)
The number density and number flux density are

n =
∑

a

δ3(x− xa(t)) , J =
∑

a

δ3(x− xa(t))
dxa

dt
(1)
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where the Dirac delta function has its usual meaning as a distribution:

∫

d3x f(x) δ3(x− y) = f(y) . (2)

In order to get well-defined quantities when relativistic motions are allowed, we at-
tempt to combine the number and flux densities into a four-vector ~N . The obvious
generalization of equation (1) is

~N =
∑

a

δ3(x− xa(t))
d~xa

dt
. (3)

However, this is not suitable because time and space are explicitly distinguished: (t, x).
A first step is to insert one more delta function, with an integral (over time) added to
cancel it:

~N =
∑

a

∫

dt′ δ4(x− xa(t
′))

d~xa

dt′
. (4)

The four-dimensional Dirac delta function is to be understood as the product of the
three-dimensional delta function with δ(t− ta(t

′)) = δ(x0 − t′):

δ4(x− y) ≡ δ(x0 − y0)δ(x1 − y1)δ(x2 − y2)δ(x3 − y3) . (5)

Equation (4) looks promising except for the fact that our time coordinate t′ is frame-
dependent. The solution is to use a Lorentz-invariant time for each particle — the
proper time along the particle’s worldline. We already know that particle trajectories in
spacetime can be written xa(τ). We can change the parametrization in equation (4) so
as to obtain a Lorentz-invariant object, a four-vector:

~N =
∑

a

∫

dτ δ4(x− xa(τ))
d~xa

dτ
. (6)

2.1 Lorentz Invariance of the Dirac Delta Function

Before accepting equation (6) as a four-vector, we should be careful to check that the
delta function is really Lorentz-invariant. We can do this without requiring the existence
of a globally inertial frame (something that doesn’t exist in the presence of gravity!)
because the delta function picks out a single spacetime point and so we may regard
spacetime integrals as being confined to a small neighborhood over which locally flat
coordinates may be chosen with metric ηµν (the Minkowski metric).

To prove that δ4(x − y) is Lorentz invariant, we note first that it is nonzero only if
xµ = yµ. Now suppose we that perform a local Lorentz transformation, which maps dxµ

to dxµ̄ = Λµ̄
νdx

ν and d4x to d4x̄ = | detΛ| d4x. Clearly, δ4(x̄ − ȳ) is nonzero only if
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xµ̄ = yµ̄ and hence only if xµ = yµ. From this it follows that δ4(x̄− ȳ) = Sδ4(x− y) for
some constant S. We will show that S = 1.

To do this, we write the Lorentz transformation in matrix notation as x̄ = Λx and
we make use the definition of the Dirac delta function:

f(ȳ) =
∫

d4x̄ δ4(x̄− ȳ)f(x̄) =
∫

d4x | det Λ|Sδ4(x− y)f(Λx) = S | detΛ| f(ȳ) . (7)

Lorentz transformations are the group of coordinate transformations which leave the
Minkowski metric invariant, η = ΛTηΛ. Now, det η = −1, from which it follows that
| detΛ| = 1. From equation (7), S = 1 and the four-dimensional Dirac delta function is
Lorentz-invariant (a Lorentz scalar).

As an aside, δ4(x) is not invariant under arbitrary coordinate transformations, be-
cause d4x isn’t invariant in general. (It is invariant only for those transformations with
| detΛ| = 1). In part 2 of the notes on tensor calculus we show that | det g|1/2d4x is fully
invariant, so we should multiply the Dirac delta function by | det g|−1/2 to make it in-
variant under general coordinate transformations. In the special case of an orthonormal
basis, g = η so that | det g| = 1.

3 Stress-Energy Tensor for a Gas of Particles

The energy and momentum of one particle is characterized by a four-vector. For a gas
of particles, or for fields (e.g. electromagnetism), we need a rank (2, 0) tensor which
combines the energy density, momentum density (or energy flux — they’re the same)
and momentum flux or stress. The stress-energy tensor is symmetric and is defined so
that

T(ẽµ, ẽν) = T µν is the flux of momentum pµ across a surface of constant xν . (8)

It follows (Schutz chapter 4) that in an orthonormal basis T 00 is the energy density,
T 0i is the energy flux (energy crossing a unit area per unit time), and T ij is the stress
(i-component momentum flux per unit area per unit time crossing the surface xj =
constant. The stress-energy tensor is especially important in general relativity because
it is the source of gravity. It is important to become familiar with it.

The components of the number-flux four-vector N ν = ~N(ẽν) give the flux of particle
number crossing a surface of constant xν (with normal one-form ẽν). From this, we can
obtain the stress-energy tensor following equation (6). Going from number (a scalar) to

momentum (a four-vector) flux is simple: multiply by ~p = m~V = md~x/dτ . Thus,

T =
∑

a

∫

dτ δ4(x− xa(τ))m~Va ⊗ ~Va . (9)

3



4 Uniform Gas of Non-Interacting Particles

The results of equations (6) and (9) include a discrete sum over particles. To go to the
continuum, or fluid, limit, we suppose that the particles are so numerous that the sum
of delta functions may be replaced by its average over a small spatial volume. To get
the number density measured in a locally flat (orthonormal) frame we must undo some
of the steps leading to equation (6). Using the fact that dt/dτ = γ, comparing equations
(3) and (6) shows that we need to evaluate

∑

a

∫

dτ δ4(x− xa(τ)) =
∑

a

γa
−1 δ3(x− xa(t)) . (10)

Now, aside from the factor γ−1a , integrating equation (10) over a small volume ∆V and
dividing by ∆V would yield the local number density. However, we must also keep
track of the velocity distribution of the particles. Let us suppose that the velocities are
randomly sampled from a (possibly spatially or temporally varying) three-dimensional
velocity distribution f(x, v, t) normalized so that, in an orthonormal frame,

∫

d3v f(x, v, t) = 1 . (11)

To make the velocity distribution Lorentz-invariant takes a little more work which we
will not present here; the interested reader may see problem 5.34 of the Problem Book

in Relativity and Gravitation by Lightman, Press, Price, and Teukolsky.
In an orthonormal frame with flat spacetime coordinates, the result becomes

∑

a

∫

dτ δ4(x− xa(τ)) = n(x)
∫

d3v γ−1 f(x, v) . (12)

Using ~V = γ(1, v) and substituting into equation (3), we obtain the number-flux four-
vector

~N = (n, J) , J = n(x)
∫

d3v f(x, v)v . (13)

Although this result has been evaluated in a particular Lorentz frame, once we have it
we could transform to any other frame or indeed to any basis, including non-orthonormal
bases.

The stress-energy tensor follows in a similar way from equations (9) and (12). In a
local Lorentz frame,

T µν = mn(x)
∫

d3v f(x, v)
V µV ν

V 0
. (14)

If there exists a frame in which the velocity distribution is isotropic (independent
of the direction of the three-velocity), the components of the stress-energy tensor are
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particularly simple in that frame:

T 00 ≡ ρ =
∫

d3v f(x, v) γmn(x) , T 0i = T i0 = 0 ,

T ij = pδij where p ≡
1

3

∫

d3v f(x, v)γmn(x)v2 . (15)

Here ρ is the energy density (γm is the energy of a particle) and p is the pressure.
Equation (15) isn’t Lorentz-invariant. However, we can get it into the form of a

spacetime tensor (an invariant) by using the tensor basis plus the spatial part of the
metric:

T = ρ~e0 ⊗ ~e0 + pηij~ei ⊗ ~ej . (16)

We can make further progress by noting that the pressure term may be rewritten after
defining the projection tensor

h = g−1 + ~e0 ⊗ ~e0 (17)

since gµν = ηµν in an orthonormal basis and therefore h00 = η00+1 = 0, h0i = hi0 = 0 and
hij = δij. The tensor h projects any one-form into a vector orthogonal to ~e0. Combining
results, we get

T = (ρ+ p)~e0 ⊗ ~e0 + p g−1 . (18)

Equation (18) is in the form of a tensor, but it picks out a preferred coordinate
system through the basis vector ~e0. To eliminate this remnant of our nonrelativistic
starting point, we note that, for any four-velocity ~U , there exists an orthonormal frame
(the instantaneous local inertial rest frame) in which ~U = ~e0. Thus, if we identify ~U as
the fluid velocity, we obtain our final result, the stress-energy tensor of a perfect gas:

T = (ρ+ p)~U ⊗ ~U + p g−1 or T µν = (ρ+ p)UµU ν + p gµν (19)

If the sleight-of-hand of converting ~e0 to ~U seems unconvincing (and it is worth checking!),
the reader may apply an explicit Lorentz boost to the tensor of equation (18) with three-
velocity U i/U0 to obtain equation (19). We must be careful to remember that ρ and p

are scalars (the proper energy density and pressure in the fluid rest frame) and ~U is the
fluid velocity four-vector.

From this result, one may be tempted to rewrite the number-flux four-vector as
~N = n~U where ~U is the same fluid 4-velocity that appears in the stress-energy tensor.
This is valid for a perfect gas, whose velocity distribution is isotropic in a particular
frame, where n would be the proper number density. However, in general T 0i is nonzero
in the frame in which N i = 0, because the energy of particles is proportional to γ but
the number is not. Noting that the kinetic energy of a particle is (γ − 1)m, we could
have a net flux of kinetic energy (heat) even if there is no net flux of momentum. In
other words, energy may be conducted by heat as well as by advection of rest mass. This
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leads to a fluid velocity in the stress-energy tensor which differs from the velocity in the
number-flux 4-vector.

Besides heat conduction, a general fluid has a spatial stress tensor differing from pδij

due to shear stress provided by, for example, shear viscosity.
An example where these concepts and techniques find use is in the analysis of fluctu-

ations in the cosmic microwave background radiation. When the radiation (photon) field
begins to decouple from the baryonic matter (hydrogen-helium plasma) about 300,000
years after the big bang, anisotropies in the photon momentum distribution develop
which lead to heat conduction and shear stress. The stress-energy tensor of the ra-
diation field must be computed by integrating over the full non-spherical momentum
distribution of the photons. Relativistic kinetic theory is one of the ingredients needed
in a theoretical calculation of cosmic microwave background anisotropies (Bertschinger
& Ma 1995, Astrophys. J. 455, 7).

6


