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1 Introduction

The first set of 8.962 notes, Introduction to Tensor Calculus for General Relativity,
discussed tensors, gradients, and elementary integration. The current notes continue
the discussion of tensor calculus with orthonormal bases and commutators (§2), parallel
transport and geodesics (§3), and the Riemann curvature tensor (§4).

2 Orthonormal Bases, Tetrads, and Commutators

A vector basis is said to be orthonormal at point X if the dot product is given by the
Minkowski metric at that point:

{~eµ̂} is orthonormal if and only if ~eµ̂ · ~eν̂ = ηµν . (1)

(We have suppressed the implied subscript X for clarity.) Note that we will always place
a hat over the index for any component of an orthonormal basis vector. The smoothness
properties of a manifold imply that it is always possible to choose an orthonormal basis
at any point in a manifold. One simply choose a basis that diagonalizes the metric
g and furthermore reduces it to the normalized Minkowski form. Indeed, there are
infinitely many orthonormal bases atX related to each other by Lorentz transformations.
Orthonormal bases correspond to locally inertial frames.
For each basis of orthonormal vectors there is a corresponding basis of orthonormal

one-forms related to the basis vectors by the usual duality condition:
〈
ẽµ̂, ~eν̂

〉
= δµν . (2)

The existence of orthonormal bases at one point is very useful in providing a locally
inertial frame in which to present the components of tensors measured by an observer at

1



rest in that frame. Consider an observer with 4-velocity ~V at point X. Since ~V · ~V = −1,
the observer’s rest frame has timelike orthonormal basis vector ~e0̂ =

~V . The observer has
a set of orthonormal space axes given by a set of spatial unit vectors ~eî. For a given ~e0̂,
there are of course many possible choices for the spatial axes that are related by spatial
rotations. Each choice of spatial axes, when combined with the observer’s 4-velocity,
gives an orthonormal basis or tetrad. Thus, an observer carries along an orthonormal
bases that we call the observer’s tetrad. This basis is the natural one for splitting
vectors, one-forms, and tensors into timelike and spacelike parts. We use the observer’s
tetrad to extract physical, measurable quantities from geometric, coordinate-free objects
in general relativity.
For example, consider a particle with 4-momentum ~P . The energy in the observer’s

instantaneous inertial local rest frame is E = −~V · ~P = −~e0̂ ·
~P = 〈ẽ0̂, ~P 〉. The observer

can define a (2, 0) projection tensor

h ≡ g−1 + ~V ⊗ ~V (3)

with components (in any basis) hαβ = gαβ + V αV β. This projection tensor is essentially

the inverse metric on spatial hypersurfaces orthogonal to ~V ; the corresponding (0, 2)
tensor is hµν = gαµgβνh

αβ. The reader can easily verify that hµνV
µ = hµνV

ν = 0, hence
in the observer’s tetrad, hµ̂ν̂ = hµ̂ν̂ = diag(0, 1, 1, 1). Then, the spatial momentum

components follow from P î = 〈ẽî, ~P 〉 = Pî = ~eî ·
~P . (Normally it is meaningless to equate

components of one-forms and vectors since they cannot be equal in all bases. Here we are
restricting ourselves to a single basis — the observer’s tetrad — where it happens that
spatial components of one-forms and vectors are equal.) Note that P î~eî = h(g( ~P )): the
spatial part of the momentum is extracted using h. Thus, in any basis, P µ = EV µ+hµνP

ν

splits ~P into parts parallel and perpendicular to ~V . (Note hµν ≡ gκνh
µκ.)

2.1 Tetrads

If one can define an orthonormal basis for the tangent space at any point in a manifold,
then one can define a set of orthonormal bases for every point in the manifold. In this
way, equation (1) applies everywhere. At all spacetime points, the dot product has been
reduced to the Minkowski form: gµ̂ν̂ = ηµ̂ν̂ . One then has an orthonormal basis, or
tetrad, for all points of spacetime.
If spacetime is not flat, how can we reduce the metric at every point to the Minkowski

form? Doesn’t that require a globally flat, Minkowski spacetime? How can one have the
Minkowski metric without having Minkowski spacetime?
The resolution of this paradox lies in the fact that the metric we introduced in a

coordinate basis has at least three different roles, and only one of them is played by
ηµ̂ν̂ . First, the metric gives the dot product: ~A · ~B = gµνA

µBν = ηµ̂ν̂A
µ̂Bν̂ . Both gµν
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and ηµ̂ν̂ fulfill this role. Second, the metric components in a coordinate basis give the
connection through the well-known Christoffel formula involving the partial derivatives
of the metric components. Obviously since ηµ̂ν̂ has zero derivatives, it cannot give the
connection. Third, the metric in a coordinate basis gives spacetime length and time
through d~x = dxµ~eµ. Combining this with the dot product gives the line element,
ds2 = d~x · d~x = gµνdx

µdxν . This formula is true only in a coordinate basis!
Usually when we speak of “metric” we mean the metric in a coordinate basis, which

relates coordinate differentials to the line element: ds2 = gµνdx
µdxν . An orthonormal

basis, unless it is also a coordinate basis, does not have enough information to pro-
vide the line element (or the connection). To determine these, we must find a linear
transformation from the orthonormal basis to a coordinate basis:

~eµ = Eµ̂
µ~eµ̂ . (4)

The coefficients E µ̂
µ are called the tetrad components. Note that µ̂ labels the (tetrad)

basis vector while µ labels the component in some coordinate system (which may have
no relation at all to the orthonormal basis). For a given orthonormal basis, E µ̂

µ may be

regarded as (the components of) a set of 4 one-form fields, one one-form Ẽµ̂ = Eµ̂
µẽ

µ

for each value of µ̂. Note that the tetrad components are not the components of a (1,1)
tensor because of the mixture of two different bases.
The tetrad may be inverted in the obvious way:

~eµ̂ = Eµ
µ̂~eµ where Eµ

µ̂E
µ̂
ν = δµν . (5)

The dual basis one-forms are related by the tetrad and its inverse as for any change of
basis: ẽµ = Eµ

µ̂ẽ
µ̂, ẽµ̂ = Eµ̂

µẽ
µ,

The metric components in the coordinate basis follow from the tetrad components:

gµν = ~eµ · ~eν = ηµ̂ν̂E
µ̂
µE

ν̂
ν (6)

or g = ETηE in matrix notation. Sometimes the tetrad is called the “square root of the
metric.” Equation (6) is the key result allowing us to use orthonormal bases in curved
spacetime.
To discuss the curvature of a manifold we first need a connection relating nearby

points in the manifold. If there exists any basis (orthonormal or not) such that 〈ẽλ, ∇̃~eµ〉 ≡
Γλµν ẽ

ν = 0 everywhere, then the manifold is indeed flat. However, the converse is not
true: if the basis vectors rotate from one point to another even in a flat space (e.g. the
polar coordinate basis in the plane) the connection will not vanish. Thus we will need
to compute the connection and later look for additional quantities that give an invariant
(basis-free) meaning to curvature. First we examine a more primitive object related to
the gradient of vector fields, the commutator.
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2.2 Commutators

The difference between an orthonormal basis and a coordinate basis arises immediately
when one considers the commutator of two vector fields, which is a vector that may
symbolically be defined by

[ ~A, ~B ] ≡ ∇A∇B −∇B∇A (7)

where ∇A is the directional derivative (∇A = Aµ∂µ in a coordinate basis). Equation
(7) introduces a new notation and new concept of a vector since the right-hand side
consists solely of differential operators with no arrows! To interpret this, we rewrite the
right-hand side in a coordinate basis using, e.g., ∇A∇Bf = Aµ∂µ(B

ν∂νf) (where f is
any twice-differentiable scalar field):

[ ~A, ~B ] =

(
Aµ∂B

ν

∂xµ
−Bµ∂A

ν

∂xµ

)
∂

∂xν
. (8)

This is equivalent to a vector because {∂/∂xν} provide a coordinate basis for vectors
in the formulation of differential geometry introduced by Cartan. Given our heuristic
approach to vectors as objects with magnitude and direction, it seems strange to treat a
partial derivative as a vector. However, Cartan showed that directional derivatives form
a vector space isomorphic to the tangent space of a manifold. Following him, differential
geometry experts replace our coordinate basis vectors ~eµ by ∂/∂xµ. (MTW introduce this
approach in Chapter 8. On p. 203, they write ~eα = ∂P/∂xα where P refers to a point in
the manifold, as a way to indicate the association of the tangent vector and directional
derivative.) With this choice, vectors become differential operators (e.g. ~A = Aµ∂µ) and
thus the commutator of two vector fields involves derivatives. However, we need not
follow the Cartan notation. It is enough for us to define the commutator of two vectors
by its components in a coordinate basis,

[ ~A, ~B ] = (Aµ∂µB
ν −Bµ∂µA

ν)~eν in a coordinate basis, (9)

where the partial derivative operators act only on Bν and Aν but not on ~eν .
Equation (9) implies

[ ~A, ~B ] = ∇A
~B −∇B

~A+ T µ
αβA

αBβ~eµ , (10)

where T µ
αβ ≡ Γ

µ
αβ − Γ

µ
βα in a coordinate basis is a quantity called the torsion tensor.

The reader may easily show that the torsion tensor also follows from the commutator of
covariant derivatives applied to any twice-differentiable scalar field,

(∇α∇β −∇β∇α)f = T µ
αβ∇µf (11)

4



This equation shows that the torsion is a tensor even though the connection is not. The
torsion vanishes by assumption in general relativity. This is a statement of physics,
not mathematics. Other gravity theories allow for torsion to incorporate possible new
physical effects beyond Einstein gravity.
The basis vector fields ~eµ(x) are vector fields, so let us examine their commutators.

From equation (9) or (10), in an coordinate basis, the commutators vanish identically
(even if the torsion does not vanish):

[~eµ, ~eν ] = 0 in a coordinate basis . (12)

The vanishing of the commutators occurs because the coordinate basis vectors are dual
to an integrable basis of one-forms: ẽµ = ∇̃xµ for a set of 4 scalar fields xµ. It may be
shown that this integrability condition (i.e. that the basis one-forms may be integrated
to give functions) is equivalent to equation (12) (see Wald 1984, problem 5 of Chapter
2).
Now let us examine the commutator for an orthonormal basis. We use equation (9)

by expressing the tetrad components in a coordinate basis using equation (5). The result
is

[~eµ̂, ~eν̂ ] = ∂µ̂~eν̂ − ∂ν̂~eµ̂ ≡ ωα̂
µ̂ν̂~eα̂ , (13)

where ∂µ̂ ≡ Eµ
µ̂∂µ. Equation (13) defines the commutator basis coefficients ωα̂

µ̂ν̂

(cf. MTW eq. 8.14). Using equations (5), (12), and (13), one may show

ωα̂
µ̂ν̂ = Eα̂

α

(
∇µ̂E

α
ν̂ −∇ν̂E

α
µ̂

)
= Eµ

µ̂E
ν
ν̂

(
∂µE

α̂
ν − ∂νE

α̂
µ

)
. (14)

In general the commutator basis coefficients do not vanish. Despite the appearance of
a second (coordinate) basis, the commutator basis coefficients are independent of any
other basis besides the orthonormal one. The coordinate basis is introduced solely for
the convenience of partial differentiation with respect to the coordinates.
The commutator basis coefficients carry information about how the tetrad rotates as

one moves to nearby points in the manifold. It is useful practice to derive them for the
orthonormal basis {~er̂, ~eθ̂} in the Euclidean plane.

2.3 Connection for an orthonormal basis

The connection for the basis {~eµ̂} is defined by

∂ν̂~eµ̂ ≡ Γ
α̂
µ̂ν̂~eα̂ . (15)

(The placement of the lower subscripts on the connection agrees with MTW but is
reversed compared with Wald and Carroll.) From the local flatness theorem (metric
compatibility with covariant derivative) discussed in the first set of notes,

∇α̂gµ̂ν̂ = Eα
α̂∂αgµ̂ν̂ − Γ

β̂
µ̂α̂gβ̂ν̂ − Γ

β̂
ν̂α̂gµ̂β̂ = 0 . (16)
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In an orthonormal basis, gµ̂ν̂ = ηµ̂ν̂ is constant so its derivatives vanish. We conclude
that, in an orthonormal basis, the connection is antisymmetric on its first two indices:

Γµ̂ν̂α̂ = −Γν̂µ̂α̂ , Γµ̂ν̂α̂ ≡ gµ̂β̂Γ
β̂
ν̂α̂ = ηµ̂β̂Γ

β̂
ν̂α̂ . (17)

In an orthonormal basis, the connection is not, in general, symmetric on its last two
indices. (That is true only in a coordinate basis.)
Another equation for the connection coefficients comes from combining equations (13)

with equation (15):

ωα̂µ̂ν̂ = −Γα̂µ̂ν̂ + Γα̂ν̂µ̂ , ωα̂µ̂ν̂ ≡ gα̂β̂ω
β̂
µ̂ν̂ = ηα̂β̂ω

β̂
µ̂ν̂ . (18)

Combining these last two equations yields

Γα̂µ̂ν̂ =
1

2
(ωµ̂α̂ν̂ + ων̂α̂µ̂ − ωα̂µ̂ν̂) in an orthonormal basis. (19)

The connection coefficients in an orthonormal basis are also called Ricci rotation coeffi-
cients (Wald) or the spin connection (Carroll).
It is straightforward to generalize the results of this section to general bases that are

neither orthonormal nor coordinate. The commutator basis coefficients are defined as in
equation (12). Dropping the carets on the indices, the general connection is (MTW eq.
8.24b)

Γαµν ≡ gαβΓ
β
µν =

1

2
(∂µgαν + ∂νgαµ − ∂αgµν + ωµαν + ωναµ − ωαµν) in any basis. (20)

The results for coordinate bases (where ωαµν = 0) and for orthonormal bases (where
∂αgµν = 0) follow as special cases.

3 Parallel transport and geodesics

3.1 Differentiation along a curve

As a prelude to parallel transport we consider another form of differentiation: differen-
tiation along a curve. A curve is a parametrized path through spacetime: x(λ), where
λ is a parameter that varies smoothly and monotonically along the path. The curve
has a tangent vector ~V ≡ d~x/dλ = (dxµ/dλ)~eµ. Here one must be careful about the
interpretation: xµ are not the components of a vector; they are simply 4 scalar fields.
However, ~V = d~x/dλ is a vector (i.e. a tangent vector in the manifold).

If we wish, we could make ~V a unit vector (provided ~V is non-null) by setting dλ =
|d~x · d~x |1/2 to measure path length along the curve. However, we will impose no such
restriction in general.
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Now, suppose that we have a scalar field fX defined along the curve. We define the
derivative along the curve by a simple extension of equations (36) and (38) of the first
set of lecture notes:

df

dλ
≡ ∇V f ≡ 〈∇̃f, ~V 〉 = V µ∂µf , ~V =

d~x

dλ
. (21)

We have introduced the symbol ∇V for the directional derivative, i.e. the covariant
derivative along ~V , the tangent vector to the curve x(λ). This is a natural generalization
of ∇µ, the covariant derivative along the basis vector ~eµ.
For the derivative of a scalar field, ∇V involves just the partial derivatives ∂µ. Sup-

pose, however, that we differentiate a vector field ~AX along the curve. Now the compo-
nents of the gradient ∇µA

ν are not simply the partial derivatives but also involve the

connection. The same is true when we project the gradient onto the tangent vector ~V
along a curve:

d ~A

dλ
≡

DAµ

dλ
~eµ ≡ ∇V

~A ≡ 〈∇̃ ~A, ~V 〉 = V ν(∇νA
µ)~eµ =

(
dAµ

dλ
+ ΓµκνA

κV ν

)
~eµ . (22)

We retain the symbol ∇V to indicate the covariant derivative along ~V but we have
introduced the new notation D/dλ = V µ∇µ 6= d/dλ = V µ∂µ.

3.2 Parallel transport

The derivative of a vector along a curve leads us to an important concept called parallel
transport. Suppose that we have a curve x(λ) with tangent ~V and a vector ~A(0) defined
at one point on the curve (call it λ = 0). We define a procedure called parallel transport

by defining a vector ~A(λ) along each point of the curve in such a way that DAµ/dλ = 0:

∇V
~A = 0 ⇔ parallel transport of ~A along ~V . (23)

Over a small distance interval this procedure is equivalent to transporting the vector ~A
along the curve in such a way that the vector remains parallel to itself with constant
length: ~A(λ + ∆λ) = ~A(λ) + O(∆λ)2. In a locally flat coordinate system, with the
connection vanishing at x(λ), the components of the vector do not change as the vector
is transported along the curve. If the space were globally flat and we used rectilinear
coordinates (with vanishing connection everywhere), the components would not change
at all no matter how the vector is transported. This is not the case in a curved space or
in a flat space with curvilinear coordinates because in these cases the connection does
not vanish everywhere.
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3.3 Geodesics

Parallel transport can be used to define a special class of curves called geodesics. A
geodesic curve is one that parallel-transports its own tangent vector ~V = d~x/dλ, i.e.,

a curve that satisfies ∇V
~V = 0. In other words, not only is ~V kept parallel to itself

(with constant magnitude) along the curve, but locally the curve continues to point
in the same direction all along the path. A geodesic is the natural extension of the
definition of a “straight line” to a curved manifold. Using equations (22) and (23), we
get a second-order differential equation for the coordinates of a geodesic curve:

DV µ

dλ
=

dV µ

dλ
+ ΓµαβV

αV β = 0 for a geodesic , V µ ≡
dxµ

dλ
. (24)

Indeed, in locally flat coordinates (such that the connection vanishes at a point), this
is the equation of a straight line. However, in a curved space the connection cannot be
made to vanish everywhere. A well-known example of a geodesic in a curved space is a
great circle on a sphere.
There are several technical points worth noting about geodesic curves. The first is

that ~V · ~V = g(~V , ~V ) is constant along a geodesic because d~V /dλ = 0 (eq. 24) and
∇V g = 0 (metric compatibility with gradient). Therefore, a geodesic may be classified

by its tangent vector as being either timelike (~V · ~V < 0), spacelike (~V · ~V > 0) or null

(~V · ~V = 0). The second point is that a nonlinear transformation of the parameter λ will
invalidate equation (24). In other words, if xµ(λ) solves equation (24), yµ(λ) ≡ xµ(ξ(λ))
will not solve it unless ξ = aλ + b for some constants a and b. Only a special class of
parameters, called affine parameters, can parametrize geodesic curves.
The affine parameter has a special interpretation for a non-null geodesic. We deduce

this relation from the constancy along the geodesic of ~V ·~V = (d~x·d~x)/(dλ2) ≡ a, implying
ds = adλ and therefore s = aλ + b where s is the path length (ds2 = gµνdx

µdxν). For

a non-null geodesic (~V · ~V 6= 0), all affine parameters are linear functions of path length
(or proper time, if the geodesic is timelike). The linear scaling of path length amounts
simply to the freedom to change units of length and to choose any point as λ = 0.
Note that originally we imposed no constraints on the parameterization. However, the
solutions of the geodesic equation automatically have λ being an affine parameter. There
is no fundamental reason to use an affine parameter; one could always take a solution
of the geodesic equation and reparameterize it or eliminate the parameter altogether by
replacing it with one of the coordinates along the geodesic. For example, for a timelike
trajectory, xi(t) is a perfectly valid description and is equivalent to xµ(λ). But the spatial
components as functions of t = x0 clearly do not satisfy the geodesic equation for xµ(λ).
Another interesting point is that the total path length is stationary for a geodesic:

δ
∫ B

A
ds = δ

∫ B

A

∣∣∣∣∣gµν
dxµ

dλ

dxν

dλ

∣∣∣∣∣

1/2

dλ = 0 (25)
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if λ is an affine parameter. The δ refers to a variation of the integral arising from
a variation of the curve, xµ(λ) → xµ(λ) + δxµ(λ), with fixed endpoints. The metric
components are considered here to be functions of the coordinates. The variational
principle is discussed in section 2 of the 8.962 notes “Hamiltonian Dynamics of Particle
Motion,” where it is shown that stationary path length implies the geodesic equation (24)
if the parameterization is affine. Equation (25) is invariant under reparameterization, so
its stationary solutions are a broader class of functions than the solutions of equation
(24). In general, the tangent vector of the stationary solutions are not normalized:

|~V · ~V |1/2 = Q(λ) 6= constant, implying that λ is not affine. It is easy to show that any
stationary solution may be reparameterized, λ → τ through dτ/dλ = Q(λ), and that
the resulting curve xµ(λ(τ)) obeys the geodesic equation with affine parameter τ . This

transformation replaces the unnormalized tangent vector ~V by ~V /Q(λ). For an affine
parameterization, the tangent vector must always have constant length.
Equation (25) is a curved space generalization of the statement that a straight line

is the shortest path between two points in flat space.

3.4 Integrals of motion and Killing vectors

Equation (24) is a set of four second-order nonlinear ordinary differential equations for
the coordinates of a geodesic curve. One may ask whether the order of this system
can be reduced by finding integrals of the motion. An integral, also called a conserved
quantity, is a function of xµ and V µ = dxµ/dλ that is constant along any geodesic. At

least one integral always exists: ~V · ~V = gµνV
µV ν . (For an affine parameterization, ~V · ~V

is constant along the curve.) Are there others? Sometimes. One may show that equation
(24) may be rewritten as an equation of motion for Vµ ≡ gµνV

ν , yielding

dVµ
dλ

=
1

2
(∂µgαβ)V

αV β . (26)

Consequently, if all of the metric components are independent of some particular coor-
dinate xµ, the corresponding component of the tangent one-form is constant along the
geodesic. This result is very useful in reducing the amount of integration needed to
construct geodesics for metrics with high symmetry. However, the condition ∂µgαβ = 0
is coordinate-dependent. There is an equivalent coordinate-free test for integrals, based
on the existence of special vector fields ~K call Killing vectors. Killing vectors are, by
definition, solutions of the differential equation

∇µKν +∇νKµ = 0 . (27)

(The Killing vector components are, of course, Kµ = gµνKν .) The Killing equation (27)
usually has no solutions, but for highly symmetric spacetime manifolds there may be
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one or more solutions. It is a nice exercise to show that each Killing vector leads to the
integral of motion

〈Ṽ , ~K 〉 = KµVµ = constant along a geodesic . (28)

Note that if one of the basis vectors (for some basis) satisfies the Killing equation, then
the corresponding component of the tangent one-form is an integral of motion. The test
for integrals implied by equation (26) is a special case of the Killing vector test when the
Killing vector is simply a coordinate basis vector.
The discussion here has focused on geodesics as curves. The notes “Hamiltonian

Dynamics of Particle Motion” interprets them as worldlines for particles because, as
we will see, a fundamental postulate of general relativity is that, in the absence of non-
gravitational forces, particles move along geodesics. Given this fact, we are free to choose
units of the affine parameter λ so that dxµ/dλ is the 4-momentum P µ, normalized by
~P · ~P = −m2 for a particle of mass m (instead of dxµ/dλ = V µ, ~V · ~V = −1). Thus,

the tangent vector, denoted ~V above, is equivalent to the particle 4-momentum vector.
The affine parameter λ then measures proper time divided by particle mass. Although
one might fear this makes no sense for a massless particle, in fact it is the only way to
affinely parameterize null geodesics because the proper time change dτ vanishes along a
null geodesic so dxµ/dτ is undefined. For a massless particle, one takes the limit m→ 0
starting from the solution for a massive particle, with the result that dλ = dτ/m is finite
as m→ 0.

4 Curvature

We introduce curvature by considering parallel transport around a general (non-geodesic)
closed curve. In flat space, in a globally flat coordinate system (for which the connection
vanishes everywhere), parallel transport leaves the components of a vector unchanged.
Thus, in flat space, transporting a vector around a closed curve returns the vector to its
starting point unchanged. Not so in a nonflat space. This change under a closed cycle
is called an “anholonomy.”
Consider, for example, a sphere. Suppose that we have a vector pointing east on the

equator at longitude 0◦. We parallel transport the vector eastward on the equator by
180◦. At each point on the equator the vector points east. Now the vector is parallel
transported along a line of constant longitude over the pole and back to the starting
point on the equator. At each point on this second part of the curve, the vector points
at right angles to the curve, and its direction never changes. Yet, at the end of the curve,
at the same point where the curve started, the vector points west!
The reader may imagine that the example of the sphere is special because of the

sharp changes in direction made in the path. However, parallel transport around any
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dx
1

dx
2

Figure 1: Parallel transport around a closed curve. The vector in the lower-left corner is
parallel transported in a counter-clockwise direction along around 4 segments d~x1, d~x2,
−d~x1, and −d~x2. At the end of the journey, the vector has been rotated. This mismatch
(“anholonomy”) does not occur for parallel transport in a flat space; its existence is the
defining property of curvature.

smooth closed curve results in an anholonomy on a sphere. For example, consider a
latitude circle away from the equator. Imagine you are an airline pilot flying East from
Boston. If you were flying on a great circle route, you would soon be flying in a south-
east direction. If you parallel transport a vector along a geodesic, its direction relative
to the tangent vector (direction of motion) does not change, i.e. ∇V ( ~A · ~V ) = 0 for

parallel transport of ~A along tangent ~V . Parallel transport implies ∇V
~A = 0; moreover,

∇V
~V = 0 for a geodesic. However, a constant-latitude circle is not a geodesic, hence

∇V
~V 6= 0. In order to maintain a constant latitude, you will have to constantly steer

the airplane north compared with a great circle route. Consequently, the angle between
~A (which is parallel-transported) and the tangent changes: ∇V ( ~A · ~V ) = A · (∇V

~V ). A

nonzero rotation accumulates during the trip, leading to a net rotation of ~A around a
closed curve.
We can refine this into a definition of curvature as follows. Suppose that our closed

curve consists of four infinitesimal segments: d~x1, d~x2, −d~x1 and −d~x2. In a flat space
this would be called a parallelogram and the difference d ~A between the final and initial
vectors would vanish. In a curved space we can create a parallelogram by taking two
pairs of coordinate lines and choose d~x1 and d~x2 to point along the coordinate lines
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(e.g. in directions ~e1 and ~e2). Parallel transport around a closed curve gives a change

in the vector d ~A that must be proportional to ~A, to d~x1, and to d~x2. Remarkably, it is
proportional to nothing else. Therefore, d ~A is given by a rank (1, 3) tensor called the
Riemann curvature tensor:

d ~A( · ) ≡ −R( · , ~A, d~x1, d~x2) = −~eµR
µ
ναβ Aν dxα1 dxβ2 . (29)

The dots indicate that a one-form is to be inserted; recall that a vector is a function
of a one-form. The minus sign is purely conventional and is chosen for agreement with
MTW. Note that the Riemann tensor must be antisymmetric on the last two slots be-
cause reversing them amounts to changing the direction around the parallelogram, i.e.
swapping the final and initial vectors ~A, hence changing the sign of d ~A.
All standard GR textbooks show that equation (29) is equivalent to the following

important result known as the Ricci identity

(∇α∇β −∇β∇α)A
µ = Rµ

ναβA
ν in a coordinate basis . (30)

In a non-coordinate basis, there is an additional term on the left-hand side, −∇CA
µ

where ~C ≡ [~eα, ~eβ ]. This commutator vanishes for a coordinate basis (eq. 12).
Equation (30) is a remarkable result. In general, there is no reason whatsoever that

the derivatives of a vector field should be related to the vector field itself. Yet the
difference of second derivatives is not only related to, but is linearly proportional to the
vector field! This remarkable result is a mathematical property of metric spaces with
connections. It is equivalent to the statement that parallel transport around a small
closed parallelogram is proportional to the vector and the oriented area element (eq.
29).
Equation (30) is similar to equation (11). The torsion tensor and Riemann tensor

are geometric objects from which one may build a theory of gravity in curved spacetime.
In general relativity, the torsion is zero and the Riemann tensor holds all of the local
information about gravity.
It is straightforward to determine the components of the Riemann tensor using equa-

tion (30) with ~A = ~eν . The result is

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γ

µ
καΓ

κ
νβ − Γ

µ
κβΓ

κ
να in a coordinate basis . (31)

Note that some authors (e.g., Weinberg 1972) define the components of Riemann with
opposite sign. Our sign convention follows Misner et al (1973), Wald (1984) and Schutz
(1985).
Note that the Riemann tensor involves the first and second partial derivatives of

the metric (through the Christoffel connection in a coordinate basis). Weinberg (1972)
shows that the Riemann tensor is the only tensor that can be constructed from the metric
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tensor and its first and second partial derivatives and is linear in the second derivatives.
Recall that one can always define locally flat coordinates such that Γµνλ = 0 at a point.
However, one cannot choose coordinates such that Γµνλ = 0 everywhere unless the space
is globally flat. The Riemann tensor vanishes everywhere if and only if the manifold is
globally flat. This is a very important result.
If we lower an index on the Riemann tensor components we get the components of a

(0, 4) tensor:

Rµνκλ = gµαR
α
νκλ =

1

2
(gµλ,νκ − gµκ,νλ + gνκ,µλ − gνλ,µκ) + gαβ

(
ΓαµλΓ

β
νκ − Γ

α
µκΓ

β
νλ

)
,

(32)
where we have used commas to denote partial derivatives for brevity of notation: gµλ,νκ ≡
∂κ∂νgµλ. In this form it is easy to determine the following symmetry properties of the
Riemann tensor:

Rµνκλ = Rκλµν = −Rνµκλ = −Rµνλκ , Rµνκλ +Rµκλν +Rµλνκ = 0 . (33)

It can be shown that these symmetries reduce the number of independent components
of the Riemann tensor in four dimensions from 44 to 20.

4.1 Bianchi identities, Ricci tensor and Einstein tensor

We note here several more mathematical properties of the Riemann tensor that are
needed in general relativity. First, by differentiating the components of the Riemann
tensor one can prove the Bianchi identities:

∇σR
µ
νκλ +∇κR

µ
νλσ +∇λR

µ
νσκ = 0 . (34)

Note that the gradient symbols denote the covariant derivatives and not the partial
derivatives (otherwise we would not have a tensor equation). The Bianchi identities
imply the vanishing of the divergence of a certain (2, 0) tensor called the Einstein tensor.
To derive it, we first define a symmetric contraction of the Riemann tensor, known as
the Ricci tensor:

Rµν ≡ Rα
µαν = Rνµ = ∂κΓ

κ
µν − ∂µΓ

κ
κν + Γ

κ
κλΓ

λ
µν − Γ

κ
µλΓ

λ
κν . (35)

One can show from equations (33) that any other contraction of the Riemann tensor
either vanishes or is proportional to the Ricci tensor. The contraction of the Ricci tensor
is called the Ricci scalar:

R ≡ gµνRµν . (36)

Contracting the Bianchi identities twice and using the antisymmetry of the Riemann
tensor one obtains the following relation:

∇νG
µν = 0 , Gµν ≡ Rµν −

1

2
gµνR = Gνµ . (37)
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The symmetric tensor Gµν that we have introduced is called the Einstein tensor. Equa-
tion (37) is a mathematical identity, not a law of physics. Through the Einstein equations
it provides a deep illustration of the connection between mathematical symmetries and
physical conservation laws.
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