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1 Introduction

The usual approach to treating general relativity as a field theory is based on the La-
grangian formulation. For some purposes (e.g. numerical relativity and canonical quan-
tization), a Hamiltonian formulation is preferred. The Hamiltonian formulation of a field
theory, like the Hamiltonian formulation of particle mechanics, requires choosing a pre-
ferred time variable. For a single particle, proper time may be used, and the Hamiltonian
formulation remains manifestly covariant. For a continuous medium, the Hamiltonian
formulation requires that a time variable be defined everywhere, not just along the path
of one particle. Thus, the Hamiltonian formulation of general relativity requires a sepa-
ration of time and space coordinates, known as a 3+1 decomposition. Although the form
of the equations is no longer manifestly covariant, they are valid for any choice of time
coordinate, and for any coordinate system the results are equivalent to those obtained
from the Lagrangian approach.

It is convenient to decompose the metric as follows:

g00 = −α2 + γijβiβj , g0i = βi , gij = γij , (1)

where γij is the inverse of γij, i.e. γikγjk = δi j. This 3+1 decomposition of the metric
replaces the 10 independent metric components by the lapse function α(x), the shift

vector βi(x), and the symmetric spatial metric γij(x). The inverse spacetime metric
components are

g00 = − 1

α2
, g0i =

βi

α2
, gij = γij − βiβj

α2
, (2)
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where βi ≡ γijβj. From now on, except as noted otherwise, all Latin (spatial) indices
are raised and lowered using the spatial metric. The determinant of the four-metric is
g = −α2γ where γ is the determinant of γij.

The 3+1 decomposition separates the treatment of time and space coordinates. In
place of four-dimensional gradients, we use time derivatives and three-dimensional gra-
dients. In these notes, the symbol ∇i denotes the three-dimensional covariant

derivative with respect to the metric γij. We will not use the four-dimensional

covariant derivative. Thus,

∇jA
i = ∂jA

i + γijkA
k , γijk ≡

1

2
γil (∂jγkl + ∂kγjl − ∂lγjk) . (3)

In these notes we choose units so that 16πG = 1. We assume a coordinate basis through-
out.

These notes first consider a general metric and then specialize to a perturbed Robertson-
Walker spacetime.

2 Curvature and Gravitational Actions

In the 3+1 approach, spacetime is described by a set of three-dimensional hypersurfaces
of constant time t = x0 propagating forward in time. These hypersurfaces have intrinsic

curvature given by the three-dimensional Riemann tensor,

(3)Ri
lkm = ∂kγ

i
lm − ∂mγ

i
kl + γiknγ

n
lm − γimnγ

n
kl . (4)

Contractions define the three-dimensional Ricci tensor (3)Rij = (3)Rk
ikj and Ricci scalar,

(3)R = γij(3)Rij. In addition to the intrinsic curvature, the hypersurface of constant
time has an extrinsic curvature Kij arising from its embedding in four-dimensional
spacetime:

Kij =
1

2α
(∇iβj + ∇jβi − ∂tγij) . (5)

The full spacetime curvature is related to the intrinsic and extrinsic curvature of the
constant-time hypersurfaces by the Gauss-Codazzi equations

(4)R0
jkl = − 1

α
(∇kKjl −∇lKjk) (6)

and
(4)Ri

jkl = (3)Ri
jkl − (4)R0

jklβ
i +Ki

kKjl −Ki
lKjk . (7)

MTW and other sources give these relations assuming an orthonormal basis, for which
βi = 0 and α = 1. Equations (6) and (7) are exact for any coordinate basis. The other
components of the four-dimensional Riemann tensor follow from

(4)R0
i0j = − 1

α
∂tKij −K k

i Kjk −
1

α
∇i∇jα+

1

α

[
∇j(β

kKik) +Kjk∇iβ
k
]

(8)
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and

(4)Rk
i0j = (4)Rk

iljβ
l +
[
(4)R0

iljβ
l − (4)R0

i0j

]
βk + α

[
∇kKij −∇iK

k
j

]
. (9)

These equations may be combined to give:

(4)Rijkl = (3)Rijkl +KikKjl −KilKjk , (10a)
(4)R0jkl = (4)Rijklβ

i + α(∇kKjl −∇lKjk) = (4)Rkl0j , (10b)
(4)R0i0j = α∂tKij + α2K k

i Kjk + α∇i∇jα+ αβk∇kKij

−α∇i(β
kKjk) − α∇j(β

kKik) + (4)Rkiljβ
kβl , (10c)

and

(4)Rij
kl = (3)Rij

kl +Ki
kK

j
l −Ki

lK
j
k +

4

α
β[i∇[kK

j]
l] , (11a)

(4)R0j
kl = − 1

α
(∇kK

j
l −∇lK

j
k) , (11b)

(4)R0i
0j = − 1

α
∂tK

i
j +Ki

kK
k
j −

1

α
∇i∇jα+

1

α
∇j(β

kKi
k) −

1

α
(∇kβ

i)Kk
j . (11c)

From these one obtains the four-dimensional Einstein tensor components

G00 = − H
2α2

√
γ
, H =

√
γ
[
KijK

ij −K2 − (3)R
]
, (12a)

G0i =
αHi + βiH

2α2
√
γ

, Hi = 2
√
γ∇j(K

ij −Kγij) , (12b)

Gij = − βiβjH
2α2

√
γ

+
1

α
√
γ
∂t(

√
γ P ij) + (3)Rij − 1

2
(3)Rγij

− 1

α
(∇i∇j − γij∇2)α+

1

α
∇k

(
βiP jk + βjP ik − βkP ij

)

+2P i
kP

jk − PP ij − 1

2

(
PklP

kl − 1

2
P 2

)
γij , (12c)

where K ≡ γijK
ij and

P ij ≡ Kγij −Kij , P ≡ γijP
ij . (13)

(Components of the four-dimensional Riemann and Einstein tensors are raised and low-
ered using the four-dimensional metric; components of all other quantities, including
Kij and the three-dimensional Riemann tensor, are raised and lowered using γij.) The
four-dimensional Ricci scalar obeys

√−g (4)R = α
√
γ
[
KijK

ij −K2 + (3)R
]
− 2∂t(

√
γ K) + 2∂i

[√
γ(Kβi −∇iα)

]
. (14)
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Equation (14) provides an expression for the Einstein-Hilbert Lagrangian in the 3+1
decomposition. This expression includes two derivative terms that make no contribution
to the equations of motion. We may therefore define a new action involving the intrinsic
and extrinsic curvatures of the hypersurfaces of constant coordinate time. The result is
the ADM action [1]:

SADM[α, βi, γij] =

∫
d4xLADM(α, βi, γij) , LADM = α

√
γ
[
KijK

ij −K2 + (3)R
]
. (15)

The intrinsic curvature term may be integrated by parts to give

∫
(3)Rα

√
γ d3x =

∫ [
(γijγkjk − γjkγijk)∇iα+ αγij

(
γkliγ

l
kj − γkijγ

l
kl

)]√
γ d3x (16)

plus a surface term
∮
α(γjkγijk − γijγkjk)dSi, where dSi is the covariant surface element.

3 ADM Formulation

In the Lagrangian approach, the classical equations of motion follow from extremizing the
total action with respect to the metric fields α(x), βi(x), γij(x) and any matter fields.
The matter action SM also depends on the metric fields. The functional derivative is
defined by the integrand of a variation, neglecting any boundary terms arising from total
derivatives, e.g.

δS[γij] ≡ lim
δγij→0

S[γij(x) + δγij(x)] − S[γij(x)] ≡
∫
d4x

(
δS

δγij

)
δγij(x) , (17)

where there variation is carried to first order in δγij. The four-dimensional stress-energy
tensor is given by

T µν =
2√−g

δSM

δgµν
. (18)

Using equation (1), this gives

δSM

δα
= −α2√γ T 00 , (19a)

δSM

δβi
= α

√
γ γijT 0

j , (19b)

δSM

δγij
=

1

2
α
√
γ (T ij − βiβjT 00) . (19c)

(Note that four-dimensional components are always used for T µν and Gµν . Their compo-
nents are raised and lowered using the full spacetime metric.) Varying the ADM action
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with respect to the metric fields gives

δSADM

δα
= −H = 2α2√γ G00 , (20a)

δSADM

δβi
= −Hi = −2α

√
γ γijG0

j , (20b)

δSADM

δγij
= −∂t(

√
γ P ij) − α

√
γ

[
(3)Rij − 1

2
(3)Rγij

]

+
√
γ (∇i∇j − γij∇2)α−√

γ∇k

(
βiP jk + βjP ik − βkP ij

)

−α√γ
[
2P i

kP
jk − PP ij − 1

2

(
PklP

kl − 1

2
P 2

)
γij
]

= −α√γ (Gij − βiβjG00) . (20c)

Combining equations (19) and (20) with δSADM + δSM = 0 yields the Einstein equations

Gµν =
1

2
T µν . (21)

In the mechanics of a system of finitely many degrees of freedom, S =
∫
L(q, q̇, t) dt

where q are generalized coordinates and q̇ = dq/dt are coordinate velocities. The tran-
sition to a Hamiltonian formulation begins with the definition of canonical momenta,
p ≡ ∂L/∂q̇. In field theory, there are infinitely many degrees of freedom; the Lagrangian
L =

∫
L d3x sums over every field variable. The discrete variables q are, in effect, re-

placed by infinitely many variables α(x)d3x, and so on. The field Lagrangian is now
regarded as a function of both the generalized coordinates (α, β, γij) and their velocities
(α̇, β̇, γ̇ij), where a dot denotes ∂t. Note that the coordinate time t must be singled out
to define generalized momenta, and the Hamiltonian formulation regards time and space
derivatives in very different ways — time derivatives act on individual generalized coor-
dinates (the field values at fixed spatial position) while space derivatives relate different
field values. Using equations (5) and (15), one finds the momenta conjugate to α, βi,
and γij are, respectively,

πα ≡ ∂LADM

∂α̇
≈ 0 , (22a)

πi ≡ ∂LADM

∂β̇i
≈ 0 , (22b)

πij ≡ ∂LADM

∂γ̇ij
=

√
γ (Kγij −Kij) =

√
γ P ij . (22c)

(The matter Lagrangian is assumed to be independent of the time derivative of the metric
so it makes no contribution to the momenta.) In the classical theory, the momenta
conjugate to α and βi vanish because the Lagrangian is independent of α̇ and β̇. In
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quantum field theory, πα and πi vanish “weakly,” i.e. on shell (denoted by ≈ 0). In the
language of Dirac [2], equations (22a) and (22b) are called primary constraints.

The Hamiltonian follows from Legendre transformation of the action:

H =

∫ [
α̇πα + β̇iπ

i + γ̇ijπ
ij − LADM − LM

]
d3x

=

∫ [
α̇πα + β̇iπ

i + 2πij∇(iβj) − 2αKijπ
ij − LADM − LM

]
d3x

=

∫ [
α̇πα + β̇iπ

i − α

(LADM

α
+ 2Kijπ

ij

)

−βi(∂jπij + ∂jπ
ji + 2γijkπ

jk) − LM

]
d3x .

In the second line we have used equation (5) and in the last line we have integrated by
parts the ∂(iβj) terms and dropped the irrelevant boundary terms. Writing Kij in terms
of πij using equations (13) and (22c), we obtain the ADM Hamiltonian,

H(α, βi, γij, πα, π
i, πij) =

∫ (
α̇πα + β̇iπ

i + αH + βiHi − LM

)
d3x , (23)

where

H =
1√
γ

(
γikγjl −

1

2
γijγkl

)
πijπkl −√

γ (3)R , (24)

Hi = −(∂jπ
ij + ∂jπ

ji + 2γijkπ
jk) = −2

√
γ ∇j

(
πij√
γ

)
. (25)

These are exactly the same quantities introduced in equations (12a)–(12b) except that
now they are expressed in terms of the canonical fields and momenta. The three-
dimensional Ricci scalar is a function of the fields γij only (it contains no time derivatives)
and its spatial integral should be integrated by parts to eliminate the spatial derivatives.
Note that the Hamiltonian densities H and Hi must be regarded as functions of the
canonical variables γij and πij and not, for example, πi j ≡ γjkπ

ik or π ≡ γijπ
ij.

The ADM Hamiltonian includes terms α̇πα + β̇iπ
i that would seem to depend on ve-

locities. In fact, α̇ and β̇i are Lagrange multipliers which enforce the primary constraints
πα ≈ 0 and πi ≈ 0. These Lagrange multipliers are arbitrary and will be constrained later
by gauge-fixing. General covariance (diffeomorphism-invariance) allows us to replace α̇
and β̇i by any functions of the metric variables (α, βi, γij). This procedure amounts to
making a gauge choice. For now we impose no gauge conditions.

We can obtain the equations of motion using equal-time Poisson brackets, which are
defined by

{A,B} =

∫ [
δA

δγij(x, t)

δB

δπij(x, t)
− δA

δπij(x, t)

δB

δγij(x, t)

]
d3x . (26)
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The fundamental Poisson brackets are

{α(x), πα(x
′)} = δ3(x − x′) , (27a)

{βj(x), πi(x′)} = δi j δ
3(x − x′) , (27b)

{γkl(x), πij(x′)} = δi (kδ
j
l)δ

3(x − x′) . (27c)

Using them, we may obtain the time evolution of the canonical variables:

α̇ = {α,H} = α̇(α, βi, γij) , (28a)

β̇i = {βi, H} = β̇i(α, βi, γij) , (28b)

γ̇ij = {γij, H} = ∇iβj + ∇jβi +
α√
γ

(2πij − πγij) , (28c)

π̇α = {πα, H} = −H +
δSM

δα
= −H− α2√γ T 00 ≈ 0 , (28d)

π̇i = {πi, H} = −Hi +
δSM

δβi
= −Hi + α

√
γ γijT0j ≈ 0 , (28e)

π̇ij = {πij, H} = −α√γ
[

(3)Rij − 1

2
(3)Rγij

]

+
√
γ (∇i∇j − γij∇2)α−√

γ∇k

[
2β(iπj)k − βkπij√

γ

]

− α√
γ

[
2πi kπ

jk − ππij − 1

2

(
πklπ

kl − 1

2
π2

)
γij
]

+
δSM

δγij
. (28f)

Equations (28a)–(28b) contain no dynamical content whatsoever; they arise as Lagrange
multipliers. Equations (28d)–(28f) are equivalent to equations (19)–(21). Equation (28c)
reproduces equation (22c). Equations (28d) and (28e) are called secondary constraints

or dynamical constraints, as they enforce the primary constraints πα ≈ 0 and πi ≈ 0.
In the quantum theory, they imply that the wave function does not depend on α and
β [2]. The last equation, (28f), contains the actual dynamics of the gravitational field.
From equations (28c) and (28f), we see that γij (unlike α and βi) obeys a second-order
differential equation in time.

We now wish to eliminate the non-dynamical degrees of freedom from the Hamilto-
nian. This is done following the prescription given by Dirac [2] and detailed by Weinberg
[4]. The first step is to solve the secondary constraints for the non-dynamical variables α
and β. The results depend on the matter fields. For a scalar field φ(x) with Lagrangian
density

LM =
√−g

[
−1

2
gµν(∂µφ)(∂νφ) − V (φ)

]
, (29)
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varying the action yields

δSM

δα
= −√

γ

[
1

2α2
(φ̇− βk∂kφ)2 +

1

2
γij(∂iφ)(∂jφ) + V (φ)

]
, (30a)

δSM

δβi
= −

√
γ

2α
(φ̇− βk∂kφ)γij(∂jφ) , (30b)

δSM

δγij
=

α
√
γ

2
γikγjl(∂kφ)(∂lφ) . (30c)

Solving equations (28d) and (28e) for α and βi gives the following constraints:

Cα ≡ α2

[
2H√
γ

+ γij(∂iφ)(∂jφ) + 2V (φ)

]
+ (φ̇− βk∂kφ)2 ≈ 0 , (31a)

Ci ≡ (φ̇− βk∂kφ)(∂iφ) +
2αHi√
γ

≈ 0 , (31b)

where H and Hi are the functions of γij and πij given by equations (24) and (25).

4 Eliminating non-dynamical degrees of freedom

Equations (31) are insufficient to fix α and βi. They must be supplemented by gauge
conditions. For example, the following conditions are equivalent in the weak-field limit
to the transverse gauge conditions:

χ0 ≡ ∇iβ
i ≈ 0 , χi ≡ ∂j(γ

1/3γij) ≈ 0 . (32)

(Yes, that really is γ1/3.) These constraints include what Dirac called second-class con-

straints, i.e. those whose Poisson brackets with the primary and secondary constraints
do not vanish. We must follow the procedure outlined by [2] and [4], using the algebra
of second-class constraints to modify the Poisson brackets. With the modified brackets,
the commutators of constraints will lead to no new constraints and thereby provide a
Lie algebra. This section remains to be completed.

5 Perturbed Robertson-Walker Spacetime

To clarify the treatment of constraints and gauge-fixing, it is useful to analyze a pertur-
bative example. We choose the perturbed Robertson-Walker spacetime because of its
cosmological relevance and because it has been studied extensively using the Lagrangian
formulation.

The perturbed Robertson-Walker metric may be written

ds2 = a2(t)
[
−e2Φdt2 + 2wjE

j
idx

idt+ 0γik(x)Ek
lE

l
jdx

idxj
]
, (33)
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where the time-independent background Robertson-Walker spatial metric 0γij and its
inverse 0γij are used to raise and lower all spatial indices unless otherwise noted. The
time coordinate is called conformal time and the spatial coordinates are called comoving
coordinates. We have introduced a spatial triad matrix Ei

j, which may be written

Ei
j =

(
e−Ψ

)i
j
= δi j − ψi j +

1

2 !
ψi kψ

k
j + · · · . (34)

We require that Ψ be symmetric, i.e. ψij ≡ 0γikψ
k
j = ψji. The determinant of the

spatial metric is γ = 0γa6 exp(−2ψi i) where 0γ is the determinant of 0γij.
The metric of equation (33) has been parameterized in a fully general form but we

will treat (Φ, wi, ψ
k
j) as being small perturbations and will compute the Hamiltonian to

second order in these variables. The translation of our new metric variables to those of
equation (1) is

α = a
(
e2Φ + 0γijwiwj

)1/2
= a

[
1 + Φ +

1

2

(
Φ2 + w2

)
+ · · ·

]
,

βi = a2wjE
j
i = a2(wi − wjψ

j
i + · · · ) ,

a−2γij = 0γikE
k
lE

l
j = 0γij − 2ψij + 2ψikψ

k
j + · · · ,

a2γij = 0γikẼl
kẼ

j
l = 0γij + 2ψij + 2ψi kψ

kj + · · · , (35)

where Ẽ = exp(Ψ) is the matrix inverse of E = exp(−Ψ), i.e. Ẽi
kE

k
j = Ei

kẼ
k
j = δi j.

The connection coefficients with respect to γij are

γkij = 0γkij + Ẽk
l

[
0∇(iE

l
j) + ẼlmEn(i

0∇j)E
n
m − Ẽl

mEn(i
0∇m

En
j)

]
, (36)

where 0γkij is the connection and 0∇i is the covariant derivative, both taken with respect
to 0γij. Taylor expanding E to second order in Ψ, we get

γkij = 0γkij + 1γkij + 2γkij + · · · , (37)

where

1γkij = 0∇kψij − 0∇iψ
k
j − 0∇jψ

k
i , (38a)

2γkij = 2ψkl
[
0∇lψij − 0∇(iψ

l
j)

]
+ 2ψl(i

0∇j)ψ
k
l − 2ψl(i

0∇kψl j) . (38b)

Notice that the perturbations to the connection are three-tensors on the constant-time
hypersurfaces.

The extrinsic curvature, to second order in the perturbations, is given by

a−1Kij = −η
[
1 − Φ +

1

2

(
Φ2 − w2

)]
0γij +

[
0∇(iwj) +

1

a2
∂t(a

2ψij)

]
(1 − Φ)

−ψk(i 0∇j)wk +
[
0∇(iψ

k
j) − 0∇kψij

]
wk −

1

a2
∂t(a

2ψikψ
k
j) , (39)
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where η ≡ ȧ/a. This gives the following extrinsic curvature contribution to the ADM
action:

α
√
γ (KijK

ij −K2)

a2
√

0γ
= −6η2 + 2η

[
2Bi

i + η(3Φ − ψ)
]

+K̃ijK̃
ij − (K̃i

i)
2 − 4η

[
ΦK̃i

i + ψijψ̇ij + wi(0∇iψ − 0∇jψ
j
i)
]

−η2
[
3(Φ2 − w2) − 2Φψ − ψ2 + 4ψijψ

ij
]
, (40)

where ψ ≡ ψi i and

K̃ij = 0∇(iwj) +
1

a2
∂t(a

2ψij) (41)

reduces to the extrinsic curvature when ȧ = 0. Cosmic expansion (ȧ 6= 0) introduces
many terms. The second and third lines of equation (40) give the second-order contri-
butions.

Expanding the intrinsic curvature to second order in the perturbations gives

(3)Ra2 = 6K + 4K(ψ + ψijψ
ij) + 2(0∇2ψ − 0∇i

0∇jψ
ij)

−(0∇iψ)(0∇i
ψ) − (0∇kψ

ij)(1γkij)

−0∇i

[
2ψij∂jψ − 2ψjk(1γijk) − 0γjk(2γijk)

]
, (42)

where K is the three-dimensional curvature of the background Robertson-Walker space
and has nothing to do with K̃ij. The intrinsic curvature contribution to the ADM action
is then:

(3)Rα
√
γ

a2
√

0γ
= 6K[1 + (Φ − ψ)] + 4Kψ + 2(0∇2ψ − 0∇i

0∇jψ
ij)

+3K[(Φ − ψ)2 + w2] + 4K(Φ − ψ)ψ + 4Kψijψ
ij + 2(Φ − ψ)(0∇2ψ − 0∇i

0∇jψ
ij)

−(0∇iψ)(0∇i
ψ) − (0∇kψ

ij)(1γkij) − 0∇i

[
2ψij∂jψ − 2ψjk(1γijk) − 0γjk(2γijk)

]
. (43)

The second and third lines give the second-order contributions and a total derivative
term that may be discarded.

The ADM Lagrangian follows from combining equations (40) and (43). The zeroth-
order part is

0LADM(a, 0γij) = a2
√

0γ
(
−6η2 + 0γ

ij 0Aij

)
, 0Aij = 0γkli

0γljk − 0γkij
0γlkl . (44)

Varying the total action with respect to a(τ) and 0γij(x) gives the Friedmann and energy
conservation equations for homogeneous matter at rest in comoving coordinates. We
assume henceforth that the zeroth-order metric functions are known, and examine the
first-order and second-order Lagrangians.
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The first-order ADM Lagrangian is

1LADM

a2
√

0γ
= 2η

[
2K̃i

i + η(3Φ − ψ)
]

+ (0γjij − 0γijj)∂i(Φ − ψ)

+
[
(Φ − ψ) 0γij + 2ψij

]
0Aij − 2

[
0γ

kij − 0γl(il
0γj)k

]
0∇kψij . (45)

Extremizing the first-order action with respect to Φ gives the Friedmann equation

1

a2
√

0γ

δ(1SADM)

δΦ
= 6(η2 +K) = 2a4G00 = − 1

a2
√

0γ

δSM

δΦ
= a4T 00 = 16πGa2ρ0 . (46)

Here, ρ0 is the unperturbed density. Extremizing the first-order action with respect to
wi gives the consistency condition 0∇j

0γij = 0. Extremizing the first-order action with
respect to ψij gives

1

a2
√

0γ

δ(1SADM)

δψij
= −2(2η̇ + η2 + 3K)0γij + 2 0Aij +

2√
0γ
∂k

[√
0γ
(
0γkij − 0γl(il

0γj)k
)]

+4 0γkl(i 0γj)kl − 2 0γ(ij)k 0γlkl − 2 0γk(ik
0γj)ll

= −2(2η̇ + η2 +K)0γij = 2a4Gij

= − 1

a2
√

0γ

δSM

δψij
= a4T ij = 16πGa2p0

0γij . (47)

Here, p0 is the unperturbed pressure. In summary, extremizing the first-order action gives
the unperturbed Einstein equations. This repeats what happened with the zeroth-order
action. If we define a(τ) and 0γij(x) to be the classical solutions for the Robertson-
Walker spacetime, then the zeroth-order and first-order action both vanish identically.
In the quantum theory, a and 0γij equal the classical functions multiplied by the identity
operator so that they commute with all observables.

The dynamics of the perturbations (Φ, wi, ψij) follow from the second-order La-
grangian density,

2LADM

a2
√

0γ
= K̃ijK̃

ij − (K̃i
i)

2 − 4η
[
ΦK̃i

i + ψijψ̇ij + wi(0∇iψ − 0∇jψ
j
i)
]

+(K − η2)(3Φ2 − 2Φψ − ψ2 + 4ψijψ
ij) + 3(η2 +K)w2

+2(Φ − ψ)(0∇2ψ − 0∇i
0∇jψ

ij) − (0∇iψ)(0∇i
ψ) − (0∇kψ

ij)(1γkij) , (48)

where we have discarded the boundary terms of equation (48). Varying this Lagrangian
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with respect to the metric fields gives

1

2a2
√

0γ

δ(2SADM)

δΦ
= (0∇2 + 2K)ψ − 0∇i

0∇jψ
ij − 2η(ψ̇ + 3ηΦ + 0∇iw

i)

+3(η2 +K)(Φ − ψ) , (49a)

1

2a2
√

0γ

δ(2SADM)

δwi
= −1

2
(0∇2 + 2K)wi +

1

2
0∇i(0∇jw

j) − 0∇jψ̇
ij + 0∇i(ψ̇ + 2ηΦ)

+3(η2 +K)wi , (49b)

1

2a2
√

0γ

δ(2SADM)

δψij
= −(∂2

t + 2η∂t − 0∇2 + 2K)ψij − (∂t + 2η)
[

0∇(i
wj) − (0∇kw

k)0γij
]

+
[
ψ̈ + 2η(Φ̇ + ψ̇) + 2(2η̇ + η2)Φ + 0∇k

0∇lψ
kl
]

0γij

−(0∇i 0∇j − 0γij 0∇2)(Φ − ψ) − 2 0∇(i∇kψ
j)k

−(2η̇ + η2 +K)(Φ − ψ)0γij . (49c)

In deriving these we used the commutators

(0∇k
0∇l − 0∇l

0∇k)w
i = K(δi k

0γnl − δi l
0γnk)w

n ,

(0∇k
0∇l − 0∇l

0∇k)ψ
ij = K(δi k

0γnl − δi l
0γnk)ψ

nj +K(δj k
0γnl − δj l

0γnk)ψ
in . (50)

Equations (49) (with ψij = φ 0γij − hij) reproduces the Einstein tensor components
given in Ref. [5]. As we will see, the last line of each of equations (49) arises from the
unperturbed Einstein tensor and will disappear when we add the matter action terms to
the Lagrangian.

To show this, we write the Lagrangian for scalar field matter (29) in a perturbed
Robertson-Walker spacetime by letting φ→ φ0(t)+φ(x) and using the perturbed metric
to second order. The result is

LM

a2
√

0γ
=

1

2
φ̇2

0 − Ṽ (φ0, a) + φ̇0φ̇+
1

2
φ̇2 − Ṽ (φ0 + φ, a) + Ṽ (φ0, a) −

1

2
0γij(∂iφ)(∂jφ)

−1

2
(Φ + ψ)(φ̇0 + φ̇)2 − (wi∂iφ)(φ̇0 + φ̇) − (Φ − ψ)Ṽ (φ0 + φ, a)

−1

2

[
(Φ − ψ)0γij + 2ψij

]
(∂iφ)(∂jφ)

+
1

4

[
(Φ + ψ)2 − w2

]
(φ̇0 + φ̇)2 + (Φ + ψ)(φ̇0 + φ̇)(wi∂iφ)

+
1

2
(wi∂iφ)2 − (φ̇0 + φ̇)ψij(wi∂jφ) −

[
(Φ − ψ)ψij + ψi kψ

jk
]
(∂iφ)(∂jφ)

−1

2

[
(Φ − ψ)2 + w2

] [
Ṽ (φ0 + φ, a) +

1

2
0γij(∂iφ)(∂jφ)

]
, (51)
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where
Ṽ (φ, a) ≡ a2V (φ) . (52)

We have not linearized the scalar field; φ can be arbitrarily large. We have only dropped
terms higher than quadratic in the metric perturbations. The terms in the first bracket
give the Lagrangian for a spatially homogeneous scalar field φ0(t). The second bracket
gives contributions that are independent of the metric perturbations. The second and
third lines give terms that are first order in the metric perturbations; the remaining lines
give terms that are second order. The zeroth-order Lagrangian gives the equation of
motion

φ̈0 + 2ηφ̇0 +
∂Ṽ

∂φ0

= 0 (53)

and

a2ρ0 =
1

2
φ̇2

0 + Ṽ (φ0, a) = 6(η2 +K) , (54a)

a2p0 =
1

2
φ̇2

0 − Ṽ (φ0, a) = −2(2η̇ + η2 +K) . (54b)

Together these imply
1

4
φ̇2

0 = η2 − η̇ +K . (55)

Now we linearize the scalar field by treating φ as a first-order quantity, similarly to
the metric perturbations. The first-order scalar-field Lagrangian is

1LM

a2
√

0γ
= (Φ − ψ)

[
1

2
φ̇2

0 − Ṽ (φ0, a)

]
+ φ̇0φ̇− ∂Ṽ

∂φ0

φ− φ̇2
0Φ . (56)

Varying this with respect to φ0 reproduces equation (53). Varying it with respect to the
metric perturbations and comparing with equations (46) and (47) reproduces equations
(54a) and (54b). As with the gravitational action, the first-order matter action yields
nothing new. We have to go to second order in the perturbations to see the dynamics of
the perturbations.

The second-order scalar-field Lagrangian is

2LM

a2
√

0γ
=

1

2

[
φ̇2 − 0γij(∂iφ)(∂jφ) − ∂2Ṽ

∂φ2
0

φ2

]
−
[
(Φ + ψ)φ̇+ wi∂iφ

]
φ̇0

+
1

4

[
(Φ + ψ)2 − w2

]
φ̇2

0 −
1

2

[
(Φ − ψ)2 + w2

]
Ṽ (φ0, a) − (Φ − ψ)

∂Ṽ

∂φ0

φ .(57)
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Differentiating it gives

− 1

a2
√

0γ

δ(2SM)

δΦ
= a2ρ0(Φ − ψ) + φ̇0φ̇+

∂Ṽ

∂φ0

φ− Φφ̇2
0

≡ a2 [ρ0(Φ − ψ) + δρ] , (58a)

− 1

a2
√

0γ

δ(2SM)

δwi
= a2ρ0w

i + φ̇0(
0γij)∂jφ ≡ a2

[
ρ0w

i − (ρ0 + p0)v
i
]
, (58b)

− 1

a2
√

0γ

δ(2SM)

δψij
=

[
a2p0(Φ − ψ) + φ̇0φ̇− ∂Ṽ

∂φ0

φ− Φφ̇2
0

]
0γij

≡ a2 [p0(Φ − ψ) + δp] 0γij . (58c)

As expected, the terms proportional to a2ρ0 and a2p0 cancel the last terms in equations
(49) when the matter and gravitational actions are combined. The perturbations of
energy density, velocity, and pressure are δρ, vi, and δp.

5.1 Hamiltonian Formulation

Before proceeding further with the ADM Lagrangian in a perturbed Robertson-Walker
spacetime, we first compute the Hamiltonian for the scalar field, using the second-order
Lagrangian. The canonical momentum of the scalar field is πφ ≡ ∂(2LM)/∂φ̇, which gives

πφ

a2
√

0γ
= φ̇− (Φ + ψ)φ̇0 . (59)

Performing the Legendre transformation, we get

HM

a2
√

0γ
=

1

2

[
π2
φ

(a2
√

0γ)2
+ 0γij(∂iφ)(∂jφ) +

∂2Ṽ

∂φ2
0

φ2

]
+

πφ

a2
√

0γ
(Φ + ψ)φ̇0 + φ̇0w

i∂iφ

+Φψφ̇2
0 + (Φ − ψ)

∂Ṽ

∂φ0

φ+
1

2

[
1

2
φ̇2

0 + Ṽ (φ0, a)

] [
(Φ − ψ)2 + w2

]
. (60)

With a = 1, the first set of terms (in square brackets) gives the Hamiltonian density of
a scalar field in flat spacetime. The other terms give gravitational couplings.

Next we compute the ADM Hamiltonian by Legendre transformation of equation
(48). The momentum conjugate to ψij is πij ≡ ∂2LADM/∂ψ̇ij, which gives

πij

2a2
√

0γ
= ψ̇ij + 0∇(iwj) − 0γij

[
ψ̇ + 2η(Φ + ψ) + 0∇kw

k
]
. (61)
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The ADM Hamiltonian density is given (up to irrelevant boundary terms) by

HADM

a2
√

0γ
= Φ̇πΦ + ẇiπ

i +
πijπ

ij − 1
2
(πkk)

2

4(a2
√

0γ)2
− πij

a2
√

0γ

[
0∇(iwj) + η(Φ + ψ)0γij

]

+4ηwi∂iψ − 12η2Φψ − 4Kψijψ
ij − 2(Φ − ψ)

[
(0∇2 + 2K)ψ − 0∇i

0∇jψ
ij
]

+(0∇iψ)(0∇iψ) + (0∇kψ
ij)(1γkij) − 3(η2 +K)

[
(Φ − ψ)2 + w2

]
. (62)

The last term cancels the last term of equation (60).
The net Hamiltonian for the fields is given by adding equations (60) and (62):

H[Φ, πΦ, wi, π
i, φ, πφ, ψij, π

ij] =

∫
(HADM + HM) d3x

=

∫ (
Hφ + Hψ + Hint + ΦHΦ + wiHi

)
d3x , (63)

where

Hφ =
a2
√

0γ

2

[
π2
φ

(a2
√

0γ)2
+ 0γij(∂iφ)(∂jφ) +

∂2Ṽ

∂φ2
0

φ2

]
, (64a)

Hψ =
πijπ

ij − 1
2
(πkk)

2

4a2
√

0γ
− ηψπkk + a2

√
0γ (0∇kψ

ij)
[
0∇kψij − 2 0∇(iψ

k
j)

]

−a2
√

0γ (0∇iψ)
[
0∇iψ − 20∇jψij

]
+ 4K(ψ2 − ψijψ

ij)a2
√

0γ , (64b)

Hint =

(
φ̇0πφ − a2

√
0γ

dṼ

dφ0

φ

)
ψ , (64c)

HΦ = φ̇0πφ − ηπkk + a2
√

0γ

[
−2(0∇2 + 2η̇ + 4η2)ψ + 20∇i

0∇jψ
ij +

∂Ṽ

∂φ0

φ

]
, (64d)

Hi = ∂jπ
ij + 0γijkπ

jk + a2
√

0γ (φ̇0∂jφ+ 4η∂jψ)0γij

= a2
√

0γ

[
0∇j

(
πij

a2
√

0γ

)
+ (φ̇0∂jφ+ 4η∂jψ)0γij

]
. (64e)

We have ignored the Lagrange multiplier terms Φ̇πΦ and ẇiπ
i since they play no role in

the dynamics; Φ and wi will follow from the equations of motion combined with gauge
constraints. In equations (64), Hφ depends only on φ and its conjugate momentum, Hψ

depends only on ψij and its conjugate momentum, and Hint is a coupling between φ and
ψij. Because the Hamiltonian is independent of Φ and wi, the corresponding momenta
vanish weakly: πΦ ≈ 0 and πi ≈ 0. As we will see, HΦ and Hi are constraints on the
dynamical fields φ and ψij and their momenta.
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The fundamental Poisson brackets are

{Φ(x), πΦ(y)} = δ3(x − y) , (65a)

{wj(x), πi(y)} = δi j δ
3(x − y) , (65b)

{φ(x), πφ(y)} = δ3(x − y) , (65c)

{ψkl(x), πij(y)} = δi (kδ
j
l)δ

3(x − y) . (65d)

Using them, we obtain the classical time evolution of the canonical variables:

φ̇ = {φ,H} =
πφ

a2
√

0γ
+ (Φ + ψ)φ̇0 , (66a)

ψ̇ij = {ψij, H} =
πij − 1

2
(πkk)

0γij

2a2
√

0γ
− 0∇(iwj) − η(Φ + ψ)0γij , (66b)

π̇Φ = {πΦ, H} = −HΦ(φ, πφ, ψij, π
ij) ≈ 0 , (66c)

π̇i = {πi, H} = −Hi(φ, ψij, π
ij) ≈ 0 , (66d)

π̇φ = {πφ, H} = a2
√

0γ

[
0∇2φ− ∂2Ṽ

∂φ2
0

φ− ∂Ṽ

∂φ0

(Φ − ψ) + φ̇0(
0∇iw

i)

]
, (66e)

π̇ij

a2
√

0γ
=

ηπkk
0γij

a2
√

0γ
+ 2(0∇2 − 2K)ψij − 2(0∇i 0∇j − 0γij 0∇2)(Φ − ψ)

+2
[
2(η̇ + 2η2)Φ − 2Kψ + 0∇k

0∇lψ
kl + 2η(0∇kw

k)
]

0γij

−4 0∇(i∇kψ
j)k +

(
dṼ

dφ0

φ− φ̇0πφ

a2
√

0γ

)
0γij . (66f)

A superscript 0 has been neglected on the ∇k on the third line of equation (66f) for
notational clarity. Equations (66a) and (66b) reproduce equations (59) and (61), respec-
tively. Equations (66c) and (66d) are secondary constraints which enforce the primary
constraints πΦ ≈ 0 and πi ≈ 0. They are equivalent to equations (49a) and (49b)
combined with equations (58a) and (58b).

The last two equations, (66e) and (66f), contain the actual dynamics of the scalar and
gravitational field. Combining equations (66a) and (66e) gives the equation of motion
for the scalar field:

φ̈+ 2ηφ̇− 0∇2φ+
∂2Ṽ

∂φ2
0

φ = −2
∂Ṽ

∂φ0

Φ + φ̇0(Φ̇ + ψ̇) + φ̇0(
0∇iw

i) . (67)

Combining equations (66b) and (66f) yields the equation of motion for ψij. They are
simplest when separated into the trace and trace-free parts. We write

ψij = Ψ0γij − sij ,
0γijsij = 0 . (68)
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Note that ψ = 3Ψ where Ψ is the usual notation for the gauge-invariant spatial curvature
perturbation. By combining the Hamilton equations (66), we get

Ψ̈ + η(2Ψ̇ + Φ̇) +
1

3
0∇2(Φ − Ψ) −KΨ + (2η̇ + η2)Φ

=
1

4

(
φ̇0φ̇− ∂Ṽ

∂φ0

φ− Φφ̇2
0

)
− 1

3a2
∂t
[
a2(0∇kw

k)
]
+

1

6
0∇i

0∇js
ij ,

= 4πGa2δp− 1

3a2
∂t
[
a2(0∇kw

k)
]
+

1

6
0∇i

0∇js
ij . (69)

The traceless parts of equations (66b) and (66f) give

(∂2
t + 2η∂t − 0∇2 + 2K)sij − (∂t + 2η)0∇(iwj) +

(
0∇i

0∇j −
1

3
0γij 0∇2

)
(Ψ − Φ)

= −1

2
0γij(∂t + 2η)(0∇kw

k) − 2 0∇(i∇ksj)k . (70)

Equations (69) and (70) simplify when we impose the transverse gauge conditions

χ0 ≡ 0∇kw
k ≈ 0 , χj ≡ 0∇ks

jk = 0∇k

(
1

3
ψ 0γjk − ψjk

)
≈ 0 . (71)

We have introduced the symbols χ0 and χj for gauge constraints to be used later.
For the remainder of this subsection we assume these gauge conditions hold and

explore the classical equations of motion. Then the right-hand side of equation (70)
vanishes. Using the scalar-vector-tensor decomposition, the left-hand side separates into
parts that are doubly transverse (sij), semi-transverse [0∇(iwj)], and doubly longitudinal
(Φ − ψ). All three parts must vanish separately, yielding

(∂2
t + 2η∂t − 0∇2 +K)sij = 0 , (72a)

(∂t + 2η)0∇(iwj) = 0 , (72b)(
0∇i

0∇j −
1

3
0γij 0γij 0∇2

)
(Ψ − Φ) = 0 . (72c)

The first of these is the evolution equation for gravitational waves. The second equation
implies wi = 0: in linear theory, a scalar field cannot generate a vector mode. The third
equation implies that Ψ − Φ is spatially homogeneous. Any time-varying contribution
to this contribution may be gauged away by modifying that background curvature and
hence is unmeasurable. We may therefore conclude that Φ = Ψ.

Next we examine the secondary constraints. Using equations (59), (61), and (64d),
HΦ = 0 gives

(0∇2 + 3K)Ψ − 3η(Ψ̇ + ηΦ) =
1

4

(
φ̇0φ̇+

∂Ṽ

∂φ0

φ− Φφ̇2
0

)
+ η(0∇kw

k) − 1

2
0∇i

0∇js
ij

= 4πGa2δρ+ η(0∇kw
k) − 1

2
0∇i

0∇js
ij . (73)
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From equations (49a) and (58a), this is equivalent to δ(2S)/δΦ = 0. Similarly, using
equations (61) and (64e), Hi = 0 implies

1

4
(0∇2 + 2K)wi − 0∇i(Ψ̇ + ηΦ) = −1

4
0∇i(φ̇0φ) +

1

4
0∇i(

0∇kw
k) +

1

2
0∇kṡ

k
i

= 4πGa2(ρ0 + p0)vi +
1

4
0∇i(

0∇kw
k) +

1

2
0∇kṡ

k
i . (74)

From equations (49b) and (58b), this is equivalent to δ(2S)/δwi = 0. With the gauge
conditions (71) imposed, equations (73) and (74) reduce to the standard equations for
gauge-invariant perturbations. They are initial-value constraints; their time derivatives
combined with equation (67) are redundant with equations (69) and (70).

Combining the equations of motion yields a single second-order equation for Ψ:

Ψ̈ + 3(1 + c2w)ηΨ̇ + 3(c2w − w)η2Ψ − (5 + 3w)KΨ −∇2Ψ = 0 , (75)

where

w ≡ p0

ρ0

=
2(η2 − η̇ +K)

3(η2 +K)
− 1 , c2w ≡ dp0

dρ0

= w − 1

3

d ln(1 + w)

d ln a
= 1 +

2

3ηφ̇0

∂Ṽ

∂φ0

. (76)

This equation is to be solved subject to appropriate initial conditions. Once Ψ is given,
the scalar field follows from the longitudinal part of equation (74) (or equivalently from
energy conservation),

φ =
4

φ̇0

(Ψ̇ + ηΦ) . (77)

In the transverse gauge, the complete classical solution of the linear perturbation problem
is given by the solutions of equations (72a) and (75) followed by (77), with Φ = Ψ and
wi = 0.

5.2 Reducing the Hamiltonian

The Hamiltonian of equation (63) is not ready for quantization because several of the
fields are constrained. We need to eliminate the constrained degrees of freedom. As
we will see, this involves two stages. In the first stage, we remove g0µ leaving us with
a Hamiltonian for φ and ψij and their momenta. In the second stage, we reduce ψij
further to only its transverse-traceless part. These reductions will be performed using
the method of Dirac brackets [2, 3, 4]. From now on, we drop the subscript 0 from
the spatial metric, connection, and gradient. All fields are defined on the background
Robertson-Walker space.
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5.2.1 Eliminating g0µ

As we will see, the p0µ parts of the metric perturbations are algebraically constrained
in terms of ψij and can be eliminated from the Hamiltonian system once we impose
the appropriate constraints. We consider the following constraints: πΦ ≈ 0 and πi ≈ 0
(primary); HΦ ≈ 0 and Hi ≈ 0 (secondary); and χ0 ≈ 0 and χi ≈ 0 (gauge). We can
reduce the Hamiltonian only if the Poisson brackets of all pairs of constraints vanish
weakly. Such constraints are said to be first class.

The first step is therefore to evaluate the matrix of Poisson brackets of all pairs of
constraints. Considering only the primary and secondary constraints, it is easy to see
that they all vanish weakly except, possibly, {HΦ(~x ),Hi(~y )}. To evaluate this Poisson
bracket, multiply HΦ(~x ) and Hi(~y ) by A(~x )B(~y ), where A and B are any functions
whose Poisson brackets with all fields vanish. To handle the gradients appearing in the
constraints, integrate the Poisson bracket over volume (either d3x or d3y). The following
identity is useful:

Ljkγijk = ∇jR
ij−Rjkγijk , Ljk ≡ Rjk+γjmkl(∂l∂m−γnlm∂n)−2γnlm(jγ

k)
lm∂n+γnlmoγjlmγ

k
no ,

(78)
where γjmkl = γjkγlm − γjlγkm. The differential operator is defined so that Ljkψjk =
∇2ψ−∇j∇kψjk. After some effort, using this identity one can show {HΦ(~x ),Hi(~y )} = 0.
Thus, the Poisson brackets of the primary and secondary constraints vanish making them
first-class constraints.

When gauge constraints are added, some of the Poisson brackets no longer vanish.
We find

{
χ0(x), πi(y)

}
=

[
γij(x)

∂

∂xj
− γjk(x)γijk(x)

]
δ3(x − y) , (79a)

{χi(x),HΦ(y)} = −η γjk(x)

[
γij(y)

∂

∂xk
− γil(y)γljk(x)

]
δ3(x − y)

+
1

3
η γjk(x)

[
γjk(y)

∂

∂xi
+ γkl(y)γlij(x)

]
δ3(x − y) , (79b)

{
χj(x),Hi(y)

}
= −1

2
δijγ

kl(x)

[
∂2

∂xk∂yl
− γmkl (x)

∂

∂ym

]
δ3(x − y)

−1

2

[
γik(x)

∂

∂xk
− γkl(x)γikl(x)

]
∂

∂yj
δ3(x − y) (79c)

+
1

6

[
2γil(x)

∂

∂xj
+ γik(x)γljk(x) + γkl(x)γijk(x)

]
∂

∂yl
δ3(x − y) .

Given four gauge constraints and eight original constraints, we expect a total of 8−4 = 4
first-class constraints. Clearly πΦ remains first class. Where are the other three first-class
constraints?
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By integrating the Poisson brackets over volume, one finds that {χi(x),HΦ(y)} ≈
0, so that HΦ remains first class. The other two first-class constraints are found in
the decomposition of πi(x) into longitudinal and transverse parts. To facilitate this
decomposition in a curved space, first we define the divergence and curl of the tensor
density πi(x),

~∇ · ~π ≡ ∂iπ
i , (~∇× ~π )k ≡ εijk∂i

(
γjlπ

l

√
γ

)
. (80)

Here, εijk is the Levi-Civita tensor density, and the divergence and curl of tensor densities
so defined are also tensor densities. Now we decompose πi(x):

πi(x) = πi‖ + πi⊥ , ~∇ · ~π⊥ = 0 , ~∇× ~π‖ = 0 . (81)

Substituting into equation (79a), we find {χ0(x), ~∇ × ~π(y)} ≈ 0 implying that the
two independent components of ~π⊥ commute with all other constraints. Thus, of the
original 8 first-class constraints, 4 (πΦ,HΦ, π

i
⊥) remain first class, while the remaining

4 (πi‖,Hi) become second-class. The new constraints (χ0, χi) are also second-class. We
now implement Dirac’s method to convert the second-class constraints to first-class.

In general, the set of all second-class constraints χm forms a matrix of Poisson brackets
Cmn(x,y) ≡ {χm(x), χn(y)} whose inverse C−1

mn(x,y) = {χm(x), χn(y)}−1 = −C−1
nm(y,x)

is defined by the relations

∑

k

∫
d3x′C−1

mk(x,x
′)Ckn(x

′,y) = δmnδ
3(x − y) ,

∑

k

∫
d3x′Cmk(x,x

′)C−1
kn (x′,y) = δmnδ

3(x − y) . (82)

The inverse matrix is used to define a new set of brackets, the Dirac brackets:

{U(x), V (y)}D − {U(x), V (y)}

= −
∑

k,l

∫
d3x′

∫
d3y′ {U(x), χk(x

′)}C−1
kl (x′,y′) {χl(y′), V (y)} . (83)

Here, U and V are any fields while the sum over (k, l) is taken over only the second-class
constraints. It follows at once that the second-class constraints have vanishing Dirac
brackets with all fields, so that all constraints become first-class. The key to reducing
the Hamiltonian, a preliminary to canonical quantization, is to find the Dirac brackets.

In the present case it will prove useful to replace πi‖ by a scalar potential:

πi = −√
γ γij∂jω . (84)
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Equation (79a) can now be replaced by a Poisson bracket with ω(y):

{
χ0(x), πi(y)

}
= −

√
γ(y) γij(y)

∂

∂yj
δ3(x − y)√

γ(x)
. (85)

In flat coordinates this change is trivial, but in a curved geometry one needs to inte-
grate the Poisson brackets over volume with test function A(x)B(y) to demonstrate the
equivalence of equations (79a) and (85). Comparing equations (84) and (85), we obtain

{χ0(x), ω(y)} =
δ3(x − y)√

γ(x)
. (86)

The second-class constraints decouple into pairs (χ0, ω) and (χj,Hi). The inverse
constraint matrix element for the first pair are is

{χ0(x), ω(y)}−1 = −{ω(y), χ0(x)}−1 = −
√
γ(x) δ3(x − y) . (87)

It follows that the Dirac bracket of the vector gravitational potential and its canonical
momentum vanishes:

{wj(x), πi(y)}D = 0 . (88)

At first this result is surprising because it implies that the field and canonical momentum
do not obey canonical bracket relations. The resolution is that wj and πi vanish identi-
cally (both classically and quantum mechanically) because they are constrained rather
than dynamical degrees of freedom. Physically, scalar mode linear density fluctuations
cannot generate a vector mode.

The constraint matrix for the second pair of constraints is given by equation (79c).
Inverting this is accomplished most easily with a mode expansion in the eigenfunctions
of the spatial Laplace operator. To simplify the expressions we temporarily assume a
flat Robertson-Walker background with Cartesian coordinates, obtaining the following
Fourier representation: ********** (NO: USE P i

j!! No need to use Fourier) **********

{χi(x),Hj(y)}−1 = −{Hj(x), χi(y)}−1 = 2

∫
d3k

(2π)3

eik·(x−y)

k2

(
δi j −

1

4
ninj

)
, (89)

where ni ≡ ki/k. Because Hi depends not only on πij but also on φ and ψ, the Dirac
brackets couple πij to several fields. Using equation (83), one finds the complete set of
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nonzero Dirac brackets to be

{Φ(x), πΦ(y)}D = δ3(x − y) , (90a)

{φ(x), πφ(y)}D = δ3(x − y) , (90b)

{ψkl(x), πij(y)}D =

∫
d3k

(2π)3
eik·(x−y)

[
P

(i
kP

j)
l +

1

2
nknlP

ij

]
, (90c)

{πφ(x), πij(y)}D =
3

2
a2φ̇0

∫
d3k

(2π)3
eik·(x−y)

(
ninj − 1

3
δij
)
, (90d)

{πij(x), πkl(y)}D = 6a2η

∫
d3k

(2π)3
eik·(x−y) (δijnknl − ninjδkl) , (90e)

where
P ij ≡ γij −∇i∇j∇−2 (91)

projects out the longitudinal parts of a vector and leaves a transverse vector unchanged.
In flat spacetime, P ij = γij − ninj may be regarded as the (inverse) metric for the
two-space orthogonal to the wavevector. Equation (91) generalizes this to arbitrary
Robertson-Walker spaces with the understanding that ∇−2f = g is equivalent to ∇2g =
f .

To proceed further we must decompose ψij and πij into longitudinal and transverse
parts. Symmetric two-index tensors may be decomposed into longitudinal and transverse
parts as follows:

ψij(x) = ψ
(0)
ij (x) + ψ

(1)
ij (x) + ψ

(2)
ij (x) , (92)

and similarly for πij, where there exists a scalar field f and a transverse vector ψ⊥
i such

that
ψ

(0)
ij = ∇i∇jf , ψ

(1)
ij = ∇(iψ

⊥
j) where ∇iψ⊥

i = 0 , ∇iψ
(2)
ij = 0 . (93)

We are now assuming arbitrary Robertson-Walker background. The gauge conditions
χ0 = 0 and χi = 0 imply that we can write

ψij = ∇i∇j∇−2Ψ + ψ
(2)
ij , Ψ =

1

2
γijψ

(2)
ij =

1

3
ψ , (94)

where ψ
(2)
ij is doubly transverse (but not traceless). Similarly, the secondary constraint

Hi = 0 allows us to write

πij

a2
√
γ

= −∇i∇j∇−2
(
φ̇0φ+ 12ηΨ

)
+

πij(2)
a2
√
γ
, (95)

where πij(2) is doubly transverse (but not traceless).
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Substituting equations (94) and (95) into (90c)–(90e), we get

{
ψ

(2)
kl (x), πij(2)(y)

}
D

= P
(i
kP

j)
lδ

3(x − y) , (96a)
{
πφ(x), πij(2)(y)

}
D

= −1

2
a2φ̇0P

ijδ2(x − y) , (96b)
{
πij(2)(x), πkl(2)(y)

}
D

= 0 . (96c)

We see that if we define new fields

ψ̃ij ≡ ψ
(2)
ij , π̃ij ≡ πij(2) −

1

2
a2√γ φ̇0P

ijφ , (97)

all Dirac brackets vanish except

{φ(x), πφ(y)}D = δ3(x − y) ,
{
ψ̃kl(x), π̃kl(y)

}
D

= P
(i
kP

j)
lδ

3(x − y) . (98)

Thus, π̃ij is the conjugate momentum to ψ̃ij. Although we have nominally assumed a
flat background, equations (98) are valid for an arbitrary Robertson-Walker background.

The construction of Dirac brackets is equivalent to a canonical transformation [3]. In
the present case, the transformation from (φ, ψij, πφ, π

ij) to (φ̂, ψ̂ij, π̂φ, π̂
ij) is given by a

type 3 generating functional,

F3[πφ, π
ij, φ̂, ψ̂ij] = −

∫
(πφφ̂+ πijψ̂ij)d

3x

+

∫ [
−6ηψ̂2

‖ +
1

2
φ̇0φ̂

(
γijψ̂ij − 3ψ̂‖

)]
a2√γ d3x , (99)

where ψ̂‖ ≡ ∇i∇j∇−2ψ̂ij is the longitudinal part of ψ̂ij. The old and new fields are
related by

φ = −δF3

δπφ
, ψij = − δF3

δπij
, π̂φ = −δF3

δφ̂
, π̂ij = − δF3

δψ̂ij
. (100)

Evaluating these equations gives φ̂ = φ, π̂φ = πφ, and

ψ̂ij = ψij = ψ̃ij + ∇i∇j∇−2ψ̂‖ , (101a)

π̂ij

a2
√
γ

=
π̃ij

a2
√
γ

=
πij

a2
√
γ

+ ∇i∇j∇−2(12ηψ̂‖ + φ̇0φ̂) − 1

2
φ̇0P

ijφ̂ , (101b)

in agreement with equations (94), (95) and (97). The carets (but not the tildes) may be
dropped from the right-hand side of these equations, with ψ‖ = ψ̂‖ = Ψ.

The canonical transformation preserves the Poisson brackets. By restricting consid-
eration to only the transverse degrees of freedom, one arrives at the Poisson brackets of
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equation (98). Having shown that these are simply the Poisson brackets of transformed
fields, we may drop the subscript D. The longitudinal degrees of freedom in the original
fields ψij and πij follow as a result of our gauge conditions from the transverse fields
through equations (101). After replacing the Poisson brackets with Dirac brackets, all
constraints are now first class. The constraints and equations of motion yield

Φ = Ψ = ψ‖ =
1

2
γijψ̃ij , wi = 0 . (102)

Like the primary, secondary, and gauge constraints, these are now strong equations
(in quantum mechanics, operator equations). The constrained variables can now be
eliminated from the Hamiltonian. We have reduced the dynamics to the four fields
present in φ and ψ̃ij.

1

Under a canonical transformation the Hamiltonian changes:

H → H +
∂F3

∂t
,
∂F3

∂t
= −6(η̇ + 2η2)

∫
ψ2
‖ a

2√γ d3x . (103)

The new Hamiltonian is a functional of the fields (φ, ψ̃ij, πφ, π̃
ij). It is obtained by

substituting equations (102) into the original Hamiltonian equation (63) and adding the
correction term of equation (103). The new Hamiltonian may be written H ′ =

∫
H′ d3x,

where

H′ =
a2√γ

2

[
π2
φ

(a2
√
γ)2

+ (∇φ)2 +
∂2Ṽ

∂φ2
0

φ2 +
3

4
φ̇2

0φ
2

]

+
π̃ijπ̃

ij − 1
2
(π̃kk)

2

4a2
√
γ

− ηψ‖π̃
k
k + a2√γ

(
∇kψ̃ij

)2

+ 2Ka2√γ
(
ψ̃ij

)2

+ 2a2√γ (15η2 − 9η̇ + 10K)ψ2
‖

+ 4φ̇0ψ‖πφ +
1

4
φ̇0φπ̃

k
k + 2a2√γ

(
3ηφ̇0 −

∂Ṽ

∂φ0

)
φψ‖ ., (104)

where (∇φ)2 ≡ γij(∂iφ)(∂jφ). It is straightforward to verify that this Hamiltonian (plus
the now first-class constraint HΦ = 0) reproduces the classical equations of motion
obtained from the Lagrangian. In particular, equations (98) and (104) are valid for any
curved Robertson-Walker background despite our temporary use of Cartesian coordinates
in equations (89) and (90).

1Note that the transverse field is not traceless so it has three degrees of freedom instead of two. We
will find later that the trace part can also be eliminated from the Hamiltonian.
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5.2.2 Eliminating the Trace

The Hamiltonian simplifies if we decompose the transverse gravitational fields into trace
and trace-free parts,

ψ̃ij = Pijψ‖ + ψTT
ij , π̃ij =

1

2
P ijπ̃kk + πijTT , (105)

where ψTT
ij = −sij and P ijψTT

ij = Pijπ
ij
TT = 0. Equation (104) gives

H ′ = H ′
0 +HTT , (106)

where H ′
0 =

∫
H′

0 d
3x with

H′
0 =

a2√γ
2

[
π2
φ

(a2
√
γ)2

+ (∇φ)2 +
∂2Ṽ

∂φ2
0

φ2 +
3

4
φ̇2

0φ
2

]

+ 4φ̇0ψ‖πφ +
1

4
φ̇0φπ̃

k
k − ηψ‖π̃

k
k + 2a2√γ

(
3ηφ̇0 −

∂Ṽ

∂φ0

)
φψ‖

+ 2a2√γ (∇ψ‖)
2 + 6a2√γ (φ̇2

0 + η2 + η̇)ψ2
‖ , (107)

and

HTT =

∫ [
πTT
ij π

ij
TT

4a2
√
γ

+ a2√γ (∇kψ
TT
ij )2 + 2Ka2√γ (ψTT

ij )2

]
d3x . (108)

The nonzero Poisson brackets of these new variables are

{
ψ‖(x), π̃kk(y)

}
= δ3(x − y) ,

{
ψTT
kl (x), πijTT(y)

}
=

[
P

(i
kP

j)
l −

1

2
PklP

ij

]
δ3(x − y) .

(109)
The transverse-traceless degrees of freedom are ready for quantization. For complete-

ness, we give the classical equations of motion arising from HTT:

(∂2
t + 2η∂t −∇2 + 2K)ψTT

ij = 0 , (110)

in agreement with equation (72a).
The scalar degrees of freedom, on the other hand, are not ready for quantization.

The Hamiltonian H ′
0 lacks a canonical kinetic term proportional to (π̃kk)

2, implying that
the equation of motion for ψ‖ does not involve π̃kk. Consequently, the initial value of

π̃kk cannot be determined from initial values for ψ‖ and ψ̇‖. Instead, one must impose
the initial value constraint HΦ = 0. Equations (64d) and (101) give

χ1 ≡ − HΦ

a2
√
γ

=
ηπ̃kk
a2
√
γ
− φ̇0πφ
a2
√
γ
− ∂Ṽ

∂φ0

φ+ 4(∇2 + 3η̇ + 3η2)ψ‖ ≈ 0 . (111)
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Taking the time derivative of this constraint and using the equations of motion gives
another constraint on ψ‖ and π̃kk,

χ2 ≡
χ̇1

η̇ − η2
=

π̃kk
a2
√
γ

+ 3φ̇0φ+ 24ηψ‖ ≈ 0 . (112)

Taking the time derivative again yields χ̇2 = χ1 − 2ηχ2, so (χ1, χ2) form a closed al-
gebra under time evolution. These constraints will allow us to reduce the phase space
(φ, πφ, ψ‖, π̃

k
k) by two dimensions. They are weak equations because they are second-

class constraints until we apply the method of Dirac brackets (or equivalently find a
canonical transformation that makes them canonical fields) to make them first-class.

The Poisson bracket of the constraints is

C12(x,y) ≡ {χ1(x), χ2(y)} =
4

a2
√
γ(y)

(∇2
x + 3K) δ3(x − y) , (113)

and its inverse is given by

C−1
21 (x,y) =

1

4
a2
√
γ(x) g(x,y) =

1

4
a2
√
γ(y) g(y,x) , (114)

where g(x,y) is defined as the bounded solution of

(∇2
x + 3K) g(x,y) = δ3(x − y) = (∇2

y + 3K) g(y,x) . (115)

The other elements of C−1
mn(x,y) with (m,n) ∈ {1, 2} follow from the relations

C−1
mn(x,y) = C−1

mn(y,x) = −C−1
nm(x,y) = −C−1

nm(y,x) . (116)

Substituting equations (113) and (114) into (83), we find the following nonzero Dirac
brackets:

{φ(x), πφ(y)}D = δ3(x − y) − 3

4
φ̇2

0g(x,y) , (117a)

{
φ(x), ψ‖(y)

}
D

=
φ̇0g(x,y)

4a2
√
γ(y)

=
φ̇0g(y,x)

4a2
√
γ(x)

, (117b)

{
φ(x), π̃kk(y)

}
D

= −6ηφ̇0g(x,y) , (117c)

{
ψ‖(x), πφ(y)

}
D

=
1

4

(
∂Ṽ

∂φ0

+ 3ηφ̇0

)
g(x,y) , (117d)

{
πφ(x), π̃kk(y)

}
D

a2
√
γ(y)

= 3φ̇0

[
δ3(x − y) − 3

4
φ̇2

0g(y,x)

]

+6η

(
∂Ṽ

∂φ0

+ 3ηφ̇0

)
g(y,x) , (117e)

{
ψ‖(x), π̃kk(y)

}
D

=
3

4
φ̇2

0g(x,y) . (117f)
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These relations ensure that χ1 and χ2 have vanishing Dirac brackets with all canonical
variables (φ, πφ, ψ‖, π̃

k
k). Consequently, χ1 and χ2 are first-class constraints with respect

to the Dirac brackets and we may use χ1 = χ2 = 0 to eliminate two degrees of freedom.
The retained degrees of freedom are

φ̂ ≡ φ , π̂ ≡ πφ −
φ̇0

8η
π̃kk . (118)

The Dirac bracket of these fields is simply

{
φ̂(x), π̂(y)

}
D

= δ3(x − y) . (119)

Equations (118) and (119), together with the now first-class constraints (111) and (112),
imply equations (117).

As noted previously, the construction of Dirac brackets is equivalent to a canonical
transformation. The transformation from (φ, ψ‖, πφ, π̃

k
k) to (φ̂, χ2, π̂, χ1) is

F3[πφ, π̃
k
k, φ̂, χ2, t] = −

∫
πφφ̂ d

3x+
1

48η

∫
π̃kk

(
π̃kk
a2
√
γ

+ 6φ̇0φ̂

)
d3x . (120)

The transformation is independent of χ2 because of the first-class constraint χ1 = 0. Only
the scalar field and its (new) conjugate momentum enter the dynamics. The functional
derivatives of the generating function with respect to the fields reproduces the constraints
χ1 = χ2 = 0 and equations (118).

The reduced Hamiltonian for the scalar degrees of freedom is H0 = H ′
0 + ∂F3/∂t.

Dropping the carets on φ and π, the Hamiltonian is H0[φ, π, t] =
∫
H0 d

3x with

H0 =
a2√γ

2

[
π2

(a2
√
γ)2

+ (∇φ)2 +
∂2Ṽ

∂φ2
0

φ2 +
3φ̇0

4η

∂Ṽ

∂φ0

φ2 +
3φ̇2

0

16η2
(3η2 − η̇ + 3K)φ2

]

− 3

16

φ̇2
0

η
(φπ + πφ) + 2a2√γΨ(∆ + 3K)Ψ + 2a2∂i(

√
γΨγij∂jΨ) , (121)

where Ψ ≡ ψ‖ is the solution of the first-class constraint

4(∆ + 3K)Ψ =
φ̇0π

a2
√
γ

+

[
∂Ṽ

∂φ0

+
3φ̇0

2η
(η2 + η̇ −K)

]
φ . (122)

The last term in equation (121) is a surface term and may be dropped.
We have succeeded in reducing the Hamiltonian and may now drop the subscript D

on the Poisson brackets. As a check on the reduction procedure, we evaluate the classical
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equations of motion,

φ̇ = {φ,H0} =
π

a2
√
γ
− 3φ̇2

0

8η
φ+ φ̇0Ψ , (123a)

π̇ = {π,H0} =
3φ̇2

0

8η
π + a2√γ

[
∆ − ∂2Ṽ

∂φ2
0

− 3φ̇0

4η

∂Ṽ

∂φ0

− 3φ̇2
0

8η

(
η̇

η
+

3φ̇2
0

8η

)]
φ

−a2√γ
(
∂Ṽ

∂φ0

+ 3ηφ̇0 −
3φ̇3

0

8η

)
Ψ . (123b)

Taking the time derivative of equation (122) and using equations (123), we get

1

4
φ̇0φ = Ψ̇ + ηΨ , (124)

in agreement with equation (77). We also get the classical equation of motion for φ,

φ̈+ 2ηφ̇− ∆φ+
∂2Ṽ

∂φ2
0

φ = −2
∂Ṽ

∂φ0

Ψ + 4φ̇0Ψ̇ = φ̇2
0φ+ 2φ̈0Ψ , (125)

in agreement with equation (67). Gravitational effects lead to an effective negative
mass-squared term m2

eff = −16πGφ̇2
0 as well as a coupling between the acceleration of

the background field and the gravitational potential.
Taking the time derivative of equation (124) and using equations (122) and (123)

gives [
∂2
t + 3(1 + c2)η∂t + 3(c2 − w)η2 −K(5 + 3w) − ∆

]
Ψ = 0 , (126)

in agreement with equation (75). Here,

w ≡ p0

ρ0

=
φ̇2

0 − 2Ṽ (φ0)

φ̇2
0 + 2Ṽ (φ0)

, c2 ≡ dp0

dρ0

= 1 +
2

3ηφ̇0

∂Ṽ

∂φ0

= −1

3

(
1 +

2φ̈0

ηφ̇0

)
. (127)

The Hamiltonian of equation (121) is not unique, even for the scalar field φ. It proves
convenient to invoke one more canonical transformation:

F3[π, φ, t] = −
∫
πφ d3x+

a2φ̇2
0

8

∫
φ2

[
3

2η
+

∂t ln(φ̇0/a)

∆ + 3K + 1
4
φ̇2

0

]
√
γ d3x . (128)

The new momentum variable will be denoted πφ, and should not be confused with the
variable of the same name appearing in equation (120) and preceding. Note also the
notation in which the spatial Laplace operator is treated like a number. Its meaning is
given only when a mode expansion is performed, where it is replaced by its eigenvalue.
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For example, with a Fourier integral in flat space, ∆ = −k2. After the canonical transfor-
mation (128), the Hamiltonian in the field φ (which is unchanged by the transformation)
and its new momentum πφ has become free of φπφ cross-terms:

H[φ, πφ, t] =
1

2

∫ [
(1 + θφ)π

2
φ

a2
√
γ

− a2√γ φ2

1 + θφ
(∆ − µ2

φ)

]
d3x , (129)

where we have defined

θφ ≡ φ̇2
0

4(∆ + 3K)
, µ2

φ ≡ ∂2Ṽ

∂φ2
0

− φ̇2
0 + [∂t ln(φ̇0/a)]∂t ln(1 + θφ) . (130)

Note that θφ and µ2
φ depend on both time and wavenumber. The Newtonian gauge

gravitational potential is given by the solution of

4(∆ + 3K)Ψ =
φ̇0πφ
a2
√
γ
− ∂t[ln(φ̇0/a)]φ̇0φ

(1 + θφ)
. (131)

The classical equation of motion for φ is given by

1 + θφ
a2

∂

∂t

(
a2φ̇

1 + θφ

)
= (∆ − µ2

φ)φ . (132)

The scalar field evolves like a damped harmonic oscillator whose effective mass µ2
φ

and damping rate ∂t ln[a2/(1 + θφ)] depend on momentum through the k-dependence of
θφ. For short wavelengths, |∆ + 3K| � φ̇2

0/4, θφ → 0 and the field evolution reduces
to that of a scalar field on an unperturbed Robertson-Walker background. However,
for long wavelengths, |∆ + 3K| � φ̇2

0/4, the evolution is significantly modified by the
self-gravity of the scalar field fluctuations. Neglecting the effect of metric perturbations
leads to an error in the field evolution and therefore in the calculation of inflationary
perturbations.

5.2.3 Alternative fields: Curvature and gravitational potential

Equations (121) and (129) use the scalar field perturbation φ as the fundamental field,
with two different choices of canonical momentum. It is always possible to make a
canonical transformation to different variables. There are two reasons for wanting to
make such a transformation. First, the Hamiltonian and the equations of motion can be
simplified — the new scalar field variable can have a different damping rate and effective
mass. Second, the scalar field perturbation φ is only indirectly related to the curvature
perturbations remaining after inflation. To avoid complicated dynamics, it would be
better to choose a field more closely related to the geometry.
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The ideal choice of field variable would be one that becomes constant when the
wavelength is much greater than the Hubble distance (i.e. the field is massless), inde-
pendently of the dynamics of the background expansion. When a single scalar field is the
only form of matter, or the perturbations are isentropic, such a variable is the curvature
perturbation κ (Bertschinger 2005). In the scalar field case,

κ ≡
(

2η

aφ̇0

)2
∂

∂t

(
a2

η
Ψ

)
. (133)

We make a canonical transformation from (φ, π) to (κ, πκ) as follows:

φ =
zκ

a
− (η − η̇/η)πκ
az

√
γ (∆ + 3K)

,

π = −Aaz√γ κ+
aπκ
z

+
a(η − η̇/η)Aπκ
z(∆ + 3K)

, (134)

where we have defined two functions of the background solution,

z ≡ aφ̇0

η
, A ≡ η − 3φ̇2

0

8η
− φ̈0

φ̇0

. (135)

The Hamiltonian for the new canonical variables is

H[κ, πκ, t] =
1

2

∫ [
(1 + θκ)π

2
κ

z2
√
γ

− z2√γ κ2

1 + θκ
(∆ − µ2

κ)

]
d3x , (136)

where

θκ ≡ − 3Kc2

∆ + 3K
, µ2

κ ≡ −3K(1 − c2) (137)

and c2 was defined in equation (127). Note that µκ in general depends on time but not
wavenumber; θκ depends on both. The Newtonian gauge gravitational potential is given
by the solution of

4(∆ + 3K)Ψ =
ηπκ
a2
√
γ
. (138)

The classical equation of motion for κ is

1 + θκ
z2

∂

∂t

(
z2κ̇

1 + θκ

)
= (∆ − µ2

κ)κ . (139)

The Hamiltonian and equations of motion for (κ, πκ) are similar to those for (φ, πφ),
with the important difference that θκ = µκ = 0 if K = 0. More generally, we can
approximate θκ = µκ = 0 for all length scales much smaller than the curvature distance,
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|∆| � |K|. In this case the curvature perturbation evolves as a massless scalar field and
therefore becomes constant for wavelengths much longer than the Hubble distance.

We have not succeeded in finding a canonical transformation that eliminates the mass
term in a curved Robertson-Walker universe. Finding such a transformation is equivalent
to reducing equation (139) to quadratures.

Long-wavelength curvature perturbations remain constant in a flat universe even
when the composition of the universe changes at reheating as well as through any stages
of adiabatic evolution (Bertschinger 2005). For matter with constant equation of state
parameter w = p/ρ (either a scalar field during power-law inflation or a fluid with no
entropy perturbation), the curvature perturbation is related to the Newtonian gauge
potential by

κ =
5 + 3w

3(1 + w)
Ψ if |K| � |∆| � η2 and ẇ = 0 . (140)

During inflation and reheating, ẇ 6= 0 and Ψ changes with time even for long wavelengths
when K = 0 because there is an entropy perturbation associated with the scalar field
(Bertschinger 2005). However, κ remains constant. After reheating, when w = 1

3
,

Ψ = 2
3
κ. The curvature perturbation κ is therefore the most convenient variable to use

for calculating inflationary perturbations.
Given the transformation from (φ, π) to (κ, πκ), it is straightforward to express κ in

terms of φ and φ̇:

κ =
aφ

z
+

φ̇0(η − η̇/η)

z(1 + θφ)(∆ + 3K)

∂

∂t

(
aφ

φ̇0

)
. (141)

Equation (141) allows one to compute the curvature perturbation (which is constant for
long wavelengths) if one uses φ as the primary field variable.

One might guess that the Newtonian gauge gravitational potential Ψ also would be
a good field to choose. The canonical transformation from (κ, πκ) to (Ψ, πΨ) is given by
the type 1 generating functional

F1[κ,Ψ, t] =

∫ [
yz

√
γ(∆ + 3K)κΨ − 1

2

√
γ(∆ + 3K)

y

z

∂

∂t
(yz)Ψ2

]
d3x , (142)

where we have defined

y ≡ 4a

φ̇0

. (143)

The generating gives the transformation via

πκ =
δF1

δκ
, πΨ = −δF1

δΨ
, H[Ψ, πΨ, t] = H[κ, πκ, t] +

dF1

dt
. (144)

Using this, the new Hamiltonian is

H[Ψ, πΨ, t] =
1

2

∫ {
− π2

Ψ

y2
√
γ(∆ + 3K)

+ y2√γ[(∆ + 3K)Ψ][(∆ − µ2
Ψ)Ψ]

}
d3x , (145)
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where

µ2
Ψ ≡ µ2

κ +
z

y

∂

∂t

[
1

z2

∂

∂t
(yz)

]
. (146)

The classical equation of motion for Ψ is

1

y2

∂

∂t
(y2Ψ̇) = (∆ − µ2

Ψ)Ψ . (147)

In general, µ2
Ψ 6= 0 implying that the gravitational potential changes with time for long

wavelengths. One exception is power-law inflation in a flat universe, for which µ2
Ψ = 0.

However, reheating leads invariably to a change in Ψ, so is is preferable to use the
curvature perturbation κ to track the amplitude of inflationary perturbations.

Next we consider two other variables appearing in the literature, which simplify the
equation of motion (but not its solution) by eliminating the damping terms.

5.2.4 Transformation to Mukhanov’s variables

Mukhanov introduced a transformation to eliminate the damping in a flat universe,
reducing the problem to a harmonic oscillator with time-dependent mass in flat space-
time (Mukhanov, Feldman, & Brandenberger). We generalize his variable to a curved
Robertson-Walker background:

χ ≡ zKκ ≡ zκ√
1 + θκ

=
aφ+ (1 − 4K/φ̇2

0)zΨ√
1 + θκ

. (148)

The canonical transformation from (κ, πκ) to (χ, πχ) is

κ =
χ

zK
, πκ = zKπχ − żK

√
γ χ , (149)

resulting in the Hamiltonian

H[χ, πχ, t] =
1

2

∫ [
π2
χ√
γ
−

√
γχ2

2
(∆ − µ2

χ)

]
d3x , (150)

with

µ2
χ ≡ − z̈K

zK
− 3K(1 − c2) . (151)

The Hamiltonian reduces to that of a field in flat spacetime with time-dependent mass
µχ. For a flat background, zK = z and µ2

χ = −z̈/z depends on time but not wavenumber;
for a curved background it depends on both. The classical equation of motion for χ is

χ̈ = (∆ − µ2
χ)χ . (152)

The damping term proportional to the first time derivative of the field has been elimi-
nated. The mass term implies that χ changes with time for wavelengths longer than the
Hubble length. However, the curvature perturbation κ = χ/zK does become constant
for long wavelengths as discussed in the previous subsection.
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5.2.5 Transformation to Garriga’s variables

On a curved Robertson-Walker background, the Hamiltonian takes a particularly simple
form in the variables (q, p) given by Garriga et al. (Nucl. Phys. B 513, 343, 1998). The
scalar field variable is related very simply to the Newtonian gauge gravitational potential:

q =
4a

φ̇0

Ψ . (153)

The canonical transformation from (κ, πκ) to (q, p) is2

κ =
ż

z2
q − p

z
√
γ(∆ + 3K)

,

πκ = z
√
γ(∆ + 3K)q , (154)

resulting in the Hamiltonian

H[q, p, t] =
1

2

∫ {
− p2

√
γ(∆ + 3K)

+
√
γ[(∆ + 3K)q][(∆ − µ2

q)q]

}
d3x , (155)

where

µ2
q ≡ ∂t

(
ż

z

)
−
(
ż

z

)2

− 3K(1 − c2) = η̇ − η2 − 4K − φ̇0∂
2
t

(
1

φ̇0

)
. (156)

Garriga et al. have an overall sign error in the Lagrangian equivalent to equation (150);
Gratton and Turok corrected the error (Phys. Rev. D60, 123507, 1999; astro-ph/9902265).

The classical equation of motion for q is

q̈ = (∆ − µ2
q)q . (157)

As was the case with Mukhanov’s variables, the damping terms have been eliminated.
Now, however, µ2

q is independent of wavenumber in all cases. The presence of a mass
term implies that q changes with time for wavelengths longer than the Hubble length.
The curvature perturbation κ = −∂t(q/z) does become constant for long wavelengths.

We have found five different choices for the field variable: φ, κ, Ψ, χ, and q. Any
one of these may be used for computing inflationary fluctuations. It remains to be seen
if they give identical results — this depends on the choice of the vacuum state.

6 Quantization

Canonical quantization proceeds by promoting the fields and their canonical momenta
to Heisenberg operators and Poisson brackets to commutators, for example

{A,B} → −i[A,B] . (158)

2This requires a Type 1 or Type 4 generating function.
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The fields and momenta obey the canonical commutation relations, illustrated here for
the pair (p, q),

[q(x, t), q(y, t)] = [p(x, t), p(y, t)] = 0 , [q(x, t), p(y, t)] = iδ3(x − y) (159)

and

[ψTT
ij (x, t), ψTT

kl (y, t)] = [πijTT(x, t), πklTT(y, t)] = 0 ,

[ψTT
kl (x, t), πijTT(y, t)] = i

[
P

(i
kP

j)
l −

1

2
PklP

ij

]
δ3(x − y) . (160)

The time evolution of these operators is given by

q̇(x, t) = −i[q,H] , ṗ(x, t) = −i[p,H] , ψ̇TT
ij (x, t) = −i[ψTT

ij , H] , etc. (161)

One complication compared with quantum field theory in flat spacetime is that the
Hamiltonian in a Robertson-Walker spacetime is in general time-dependent. This is only
a technical complication; we will solve equations (161) for the time evolution of the
operators.

We assume a flat background space, K = 0, with Cartesian coordinates.

6.1 Scalar Mode

We have a choice of Hamiltonians to quantize, having found a series of different canonical
variables for the Hamiltonian system. These may be regarded simply as different choices
of coordinates for the phase space of our Hamiltonian system and as such they all describe
identical dynamics. From the viewpoint of fluctuations, the natural choice of variables
is (κ, πκ) because κ becomes constant for waves stretched beyond the Hubble length.
However, we will have to calculate fluctuations assuming a vacuum state. It is unclear
whether the vacuum is canonically invariant – we’ll have to check. If it is not, we would
get different inflationary fluctuations depending on the choice of variables, a clearly
unphysical situation. It seems likely the choice of vacuum matters, we should pick the
vacuum defined by (φ, π) or φ, πφ) – hopefully they are the same!

This section should be rewritten to consider the general case, however for now it’s
left in terms of the variables (q, p).

6.1.1 Scalar Mode using (q, p)

We expand the fields p and q in Fourier space as follows:

q(x, t) =

∫
d3k

(2π)3/2
(2k3)−1/2

[
eik·xa(k, t) + h.c.

]
, (162a)

p(x, t) =

∫
d3k

(2π)3/2

(
k

2

)1/2 [
eik·x b(k, t) + h.c.

]
. (162b)
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The operators a(k, t) and b(k, t) are Heisenberg operators obeying the evolution equa-
tions

ȧ = −i[a,H] , ḃ = −i[b,H] . (163)

We can not write a(k, t) = e−iωta(k, 0) and b(k, t) = ȧ(k, t) as in flat space, because
the background spacetime curvature modifies the evolution of modes. Calculating the
correct evolution requires the Hamiltonian. Substitution into equation (150) yields

H(t) =

∫
d3k

4k

[
H0(k, t) + H−(k, t) + H†

−(k, t)
]
,

H0 = ω2(aa† + a†a) + bb† + b†b , H− = ω2aa− + bb− , (164)

where ω2 ≡ k2 +µ2(t), a ≡ a(k, t), a− ≡ a(−k, t) and similarly for b and b−. It is easy to
see that in general one expects [H0(k1, t),H−(k2, t)] 6= 0 and [H−(k1, t),H†

−(k2, t)] 6= 0.
As a result, the eigenstates of H0(k, t) (the usual Fock states) are not eigenstates of the
Hamiltonian. Moreover, eigenstates of the time-dependent Hamiltonian do not form a
convenient basis because, in general, [H(t1), H(t2)] 6= 0.

These behaviors arise because the modes with wavevectors k and −k are coupled.
This is a generic feature of quantum field theory in curved spacetime.3 The usual proce-
dure for dealing with this coupling is the Bogoliubov transformation. Equivalently, one
must find a canonical transformation that separates the Hamiltonian. Here we proceed
directly by solving the Heisenberg operator equations of motion, deriving the Bogoliubov
transformation (and hence the canonical transformation that separates the Hamiltonian)
as part of the solution.

Integrating the evolution equations (163) requires us to evaluate the equal-time com-
mutation relations for the time-dependent operators a, b, a† and b†. These can be found
using the fact that Hamiltonian evolution is unitary, with propagator

U(t, t0) = Te
−i
∫ t

t0
H(t′) dt′ ≡ lim

ε→0
e−iεH(t−ε)e−iεH(t−2ε) · · · e−iεH(t0) , (165)

where T denotes the time-ordered product. Given the operators at some initial time t0,
a(k, t) = U †a(k, t0)U . It follows that the commutators themselves evolve by the same
unitary transformation.

In an inflationary universe the conformal time t is large and negative at early times
(we take t = 0 to be the end of inflation). At the beginning of inflation, the modes
of interest have wavelengths much shorter than the Hubble distance, i.e. (kt)2 � 1,
implying µ2 � k2. In this case ω2 ≈ k2 and the mode evolution reduces to the limit of
Minkowski spacetime. Thus at any sufficiently early time t0 we may write

a(k, t0) = a0(k)e−ikt0 , b(k, t0) = −ika(k, t0) , (166)

3A real classical field theory has half as many modes because a(k, t) = a∗(−k, t). A quantum field
has a(k, t) 6= a†(−k, t). The evolution of the two distinct modes k and −k is coupled by the H− terms
in the Hamiltonian.
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where a0 obeys the usual commutation relations following from equations (159). These
commutators are invariant under unitary transformations, yielding

[a(k1, t), a(k2, t)] = [a(k1, t), b(k2, t)] = [b(k1, t), b(k2, t)] = 0 ,

[a(k1, t), a
†(k2, t)] = − i

k1
[a(k1, t), b

†(k2, t)] = 1
k2

1

[b(k1, t), b
†(k2, t)] = δ3(k1 − k2) . (167)

Equations (163), (164) and (167) now give

ȧ =
1

2
(b+ b†−) − iω2

2k
(a+ a†−) ,

ḃ = −ω
2

2
(a+ a†−) − ik

2
(b+ b†−) . (168)

The exact solution to these equations subject to the initial conditions (166) is

a(k, t) =
1

2

(
u+

i

k
u̇

)
a0(k) +

1

2

(
u∗ +

i

k
u̇∗
)
a†0(−k) , b = −ika , (169)

where u(k, t) is the solution to the ordinary differential equation

ü = −ω2u , (170)

subject to initial condition u → e−ikt as kt → −∞. The solution is normalized by the
Wronskian

uu̇∗ − u̇u∗ = 2ik . (171)

Equation (169) gives the desired Bogoliubov transformation. Equation (162b) may now
be replaced by

p(x, t) =

∫
d3k

(2π)3/2

(
k3

2

)1/2 [
−ieik·x a(k, t) + h.c.

]
. (172)

In de Sitter space, µ2 = 0 and u = e−ikt. In this case there is no mixing of modes.
Given the exact solution for a(k, t), we may rewrite the quantum fields in terms of

the Schrödinger operators as follows:

q(x, t) =

∫
d3k

(2π)3/2
eik·x q(k, t) , q(k, t) ≡ u a0(k) + u∗a†0(−k)√

2k3
, (173a)

p(x, t) =

∫
d3k

(2π)3/2
eik·x p(k, t) , p(k, t) ≡

√
k

2

[
u̇ a0(k) + u̇∗a†0(−k)

]
. (173b)

We see that q(k) = q†(−k) and p(k) = p†(−k). These conditions are guaranteed by
the requirement that q(x, t) and p(x, t) be Hermitian and they are analogous to the
conditions on the Fourier transform of a real classical field. However, in the quantum
case a0(k) and a†0(−k) are distinct operators (in particular, they do not commute).
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6.1.2 Inflationary power spectrum

We assume that the universe begins inflation in the Bunch-Davies vacuum, corresponding
to the Minkowski vacuum for modes whose wavelength is much smaller than the Hubble
distance, so that

a0(k)|0〉 = 0 , 〈0|a0(k1)a
†
0(k2)|0〉 = δ3(k1 − k2) . (174)

Using equations (173), we obtain the two-point function of the q-field:

〈0|q(x1, t1)q(x2, t2)|0〉 ≡
∫

d3k

(2π)3

u(k, t1)u
∗(k, t2)

2k3
eik·(x1−x2) , (175)

giving an equal-time power spectrum Pqq(k, t) = |u|2/(2k3). The factor u1u
∗
2 reduces

to eik(t2−t1) in Minkowski and de Sitter spacetimes as expected based on microcausality.
Interestingly, equation (175) is unaffected by the mixing of modes: the same result would
have followed if a(k, t) = u(k, t)a0(k) in equation (162).

The power spectrum of the gravitational potential Φ = φ̇0q/4a is PΦ = (φ̇0/4a)
2Pqq

and the power per logarithmic wavenumber interval is

δ2
k ≡

dσ2
Φ

d ln k
=
k3PΦ(k, t)

2π2
=

∣∣∣∣
ũ

2π

∣∣∣∣
2

= 4G2(ρ0 + p0)|u|2 , ũ ≡ 4πGφ̇0

a
u(k, t) , (176)

where we have used (φ̇0/a)
2 = ρ0 + p0 and have restored the units of G. Note that

Φ is the quantity that directly induces the scalar microwave background and matter
perturbations in the later universe. The variable ũ gives the time-dependence of the
gravitational potential; it obeys equation (126).

Equation (176) appears initially to differ significantly from the canonical result δk ∼
H2/φ̇0 (where here the dot is a proper time derivative). If |u| ∼ 1, the perturbation
amplitude for the physical (conformal Newtonian gauge) gravitational potential is smaller
than H2/φ̇0 by a factor approximately (ρ0 + p0)/ρ0 = 1 + w. Since this factor is small
during inflation, the correct amplitude of density perturbations is much smaller during

inflation than is usually assumed. However, we must be careful here! The gravitational
potential ũ is not constant even for (kt)2 � 1. In this long-wavelength limit the solution
to equation (126) is

ũ ∝ η

a2

∫ t

(1 + w)a2 dt . (177)

The solution is independent of time only for w = constant. During inflation, 1+w slowly
increases, and during reheating it increases rapidly to 4

3
. This will cause ũ to increase.

Roughly speaking, we may expect ũ to increase by a factor (1 +wi)
−1 between the time

a mode first crosses the Hubble length (when w = wi) and the end of reheating. This
will boost the CMB anisotropy up to the result of the standard calculation!
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Specifically, we want to find A(k, t) as kt→ 0, where

φ̇0

4a
u(k, t) = A(k, t)

9η

4a2

∫ t

t0

φ̇2
0a

2

6η2
dt . (178)

The amplitude A(k, 0) is just the value of ũ after reheating. During the radiation-
dominated era ũ does not evolve for (kt)2 � 1, so A(k, 0) is precisely the input to CMB
anisotropy and structure formation models. The power spectrum is related to A by
δ2
k = |A/2π|2.

We now integrate the scalar field and perturbation equations numerically to find
A(k). Using the time variable ξ ≡ ln a, the background scalar field equation of motion
becomes

d2φ0

dξ2
+

[
12 −

(
dφ0

dξ

)2
](

1

2

d lnV

dφ0

+
1

4

dφ0

dξ

)
= 0 . (179)

The equation of state is

1 + w =
1

6

(
dφ0

dξ

)2

. (180)

For an exponential potential, d lnV/dφ0 is constant and equation (179) can be integrated
exactly. If (dφ0/dξ)

2 < 12 the solutions are stable and approach the attractor dφ0/dξ =
−2d lnV/dφ0 corresponding to power-law inflation. For a power-law potential, V ∝ φn,
the equation of motion depends only on n and not on the mass scale. Provided that the
initial slope |dφ0/dξ| is not too large in magnitude, slow-roll inflation will result during
which dφ0/dξ ≈ −2n/φ0. The number of e-foldings is approximately φ2

i /4n where φi is
the starting value. Getting 60 e-foldings requires φi > 3

√
n/2 MP where MP = G−1/2 is

the Planck mass.
The perturbation amplitude follows from A ≡ u/B where the following equations

need to be solved (given here for reference):

dB

dξ
+

(
1 +

d2φ0/dξ
2

dφ0/dξ

)
B =

3

2

[
12 − (dφ0/dξ)

2

2V (φ0)

]1/2
dφ0

dξ
,

d2u

dξ2
+

[
1 − 1

4

(
dφ0

dξ

)2
]
du

dξ
+

(
k2 + µ2

η2

)
u = 0 ,

µ2

η2
= −6 +

1

4

(
dφ0

dξ

)2

−
(
a

η

)2(
d2V

dφ2
0

+ 8
dV/dφ0

dφ0/dξ

)
− 2

(
a

η

)4(
dV/dφ0

dφ0/dξ

)2

(
a

η

)2

=
12 − (dφ0/dξ)

2

2V
. (181)

The mode function u must be integrated until k2 � η2 by which time A = u/B should
become independent of time.
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The rest of this section isn’t so useful now — we need to just integrate the Friedmann
and scalar field equations, then integrate equation (177) with 1 + w = φ̇2

0/(6η
2).

It is straightforward to numerically integrate the Friedmann and background scalar
field equations and equation (170) to get ũ(k, t). A simple exact solution exists for a flat
universe when p0/ρ0 = w is a constant (power-law inflation):

a(t) = (t/t0)
ν , φ0(t) =

√
ν(ν + 1)

4πG
log(t/t0) , ν ≡ 2

1 + 3w
. (182)

Here, t0 is a constant. The corresponding potential for ν ≤ 1 is

V (φ0) =
ν(2ν − 1)

8πGt20
eφ0

√
16πG(ν+1)/ν . (183)

Inflation requires −1 ≤ w < −1
3

so that ν ≤ −1, and t0 < 0. The conformal time t is
negative and increases towards zero as a→ ∞. The scalar mode function is

u(k, t) = kth(2)
ν (kt) , h(2)

ν (x) ≡
( π

2x

)1/2 [
Jν+1/2(x) − iYν+1/2(x)

]
. (184)

Here h
(2)
ν is the spherical Bessel function of the third kind (i.e., a spherical Hankel

function). It has the limiting behavior (for ν < −1
2
)

h(2)
ν (x) ∼

{
− i exp[+iπ(ν+1/2)]

2(2ν+1)
Γ(1/2−ν)
Γ(3/2)

(x/2)ν as x→ 0 ,
1
x

exp−i
[
x− (ν + 1)π

2

]
as x→ ∞ .

(185)

The power per logarithmic wavenumber interval is (restoring all the units)

k3PΦ(k)

2π2
=

[
2Γ(1/2 − ν)

(2ν + 1)Γ(3/2)

]2
h̄Gν(ν + 1)

4πc5t20

∣∣∣∣
kt0
2

∣∣∣∣
2(ν+1)

=

[
2Γ(1/2 − ν)

(2ν + 1)Γ(3/2)

]2(
ν + 1

4πν

)
h̄GH2

c5

∣∣∣∣
kt

2

∣∣∣∣
2(ν+1)

. (186)

Note that Φ has become independent of time for (kt)2 � 1. For a single scalar field,
1 + ν ≤ 0 so the scalar index ns ≡ 1 + 2(ν + 1) < 1.

6.1.3 Quantum to Classical Transition

We can use our exact solution for the Heisenberg operator evolution to investigate the
transition from quantum perturbations to classical random fields. The description is
simplest in the Schrödinger picture, where the state vector is denoted |Ψ(t)〉. According
to the standard rules of quantum mechanics, measurement of any observable Ô leads to
the collapse of the wavefunction to an eigenstate of Ô with eigenvalue O drawn from the
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probability distribution |〈O|Ψ(t)〉|2. We do not attempt here to describe how the wave
function collapses. Instead, we show that unitary evolution leads to the perturbations
evolving classically when they are stretched far beyond the Hubble distance. We then
solve the Schrödinger equation and present the probability density functional of q(x, t) as
a path integral. Finally, we investigate the phenomenon of squeezing using the Wigner
function.

Using equation (175), we obtain the exact time structure function

〈0|[Φ(x, t1) − Φ(x, t2)]
2|0〉 =

∫
d3k

(2π)3

|ũ(k, t1) − ũ(k, t2)|2
2k3

. (187)

In the limit of small scales, (kt)2 � 1, the power spectrum of Φ(x, t1) − Φ(x, t2) equals
2[1− cos k(t2 − t1)]PΦ and the field fluctuates with time. However, on large scales ũ(k, t)
evolves much more slowly. In particular, if the equation of state is constant, ũ(k, t)
is independent of time for (kt)2 � 1 and the long-wavelength gravitational potential
perturbations become frozen in. If the equation of state changes, the structure function
changes exactly according to the classical evolution of Φ(k, t). In other words, the field
values for a given k at successive times are very highly correlated and the field evolves
classically. Quantum fluctuations generated on scales comparable to or smaller than the
Hubble distance become frozen and evolve classically when (kt)2 � 1.

The next question is, what classical values do the long-wavelength components of the
field take? This question can be answered by solving the Schrödinger equation for the
time-dependent wavefunction. Defining the Schrödinger state vector at time t by

|Ψ(t)〉 = U |0〉 (188)

where U is the time evolution operator, equation (174) implies

Ua0(k)U †|Ψ(t)〉 = 0 ∀ k . (189)

Now, a(k, t) = U †a0(k)U , and from equation (169) (suppressing the arguments where
there is no ambiguity)

a0 = UaU † =
1

2

(
u∗ − i

k
u̇∗
)
a− 1

2

(
u∗ +

i

k
u̇∗
)
a†− , (190)

yielding

Ua0U
† =

1

2

(
u∗ − i

k
u̇∗
)
a0 −

1

2

(
u∗ +

i

k
u̇∗
)
a†0− . (191)

This last result is easily confirmed using a0 = U †(Ua0U
†)U .

We define the following Schrödinger operators:

q0(k) ≡ 1√
2k3

[
a0(k) + a†0(k)

]
,

p0(k) ≡
√
k3

2

[
−ia0(k) + ia†0(k)

]
. (192)
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Their commutator is
[q0(k1), p0(k2)] = iδ3(k1 − k2) , (193)

implying that in the coordinate representation we may write

p0 = −iδ3(0)
∂

∂q0
. (194)

The Dirac delta function is necessary because of our continuum representation of the
fields; with quantization in a periodic cube of length L, δ3(0) → (L/2π)3. It arises
because we are considering only the two modes k and −k. When we compute correlators
below, the delta functions will disappear.

We now apply equation (189) to the pair of modes (k,−k) with q1 ≡ q0(k), q2 ≡
q0(−k). The Schrödinger wavefunction Ψ(q1, q2, t) = 〈q1, q2|Ψ(t)〉 is annihilated by the
pair of operators

U(a1 + a2)U
† = −iu̇∗

√
k

2
(q1 + q2) +

u∗δ3(0)√
2k3

(
∂

∂q1
+

∂

∂q2

)
,

U(a1 − a2)U
† = u∗

√
k3

2
(q1 − q2) −

iu̇∗δ3(0)√
2k5

(
∂

∂q1
− ∂

∂q2

)
. (195)

At a sufficiently early time t0 when (kt0)
2 � 1, the system is in the Bunch-Davies

vacuum, |Ψ(t0)〉 = |0〉. Solving the time evolution given by equation (189) yields

Ψ(q1, q2, t) = N exp

[
−k

3(1 + θ2)

4θδ3(0)
(q2

1 + q2
2) +

k3(1 − θ2)

2θδ3(0)
q1q2

]
, (196)

where N is a normalization constant and

θ ≡ − iu̇∗

ku∗
, θr ≡

1

2
(θ + θ∗) =

1

|u|2 , θi =
i

2
(θ∗ − θ) = −1

k

d ln |u|
dt

. (197)

The probability density is

|Ψ|2 = N2 exp

[
−(q2

1 + q2
2 − 2ρq1q2)

2σ2(1 − ρ2)

]
, σ2 ≡ |u|2(1 + |θ|2)δ3(0)

4k3
, ρ ≡ 1 − |θ|2

1 + |θ|2 , (198)

from which we see N−2 = 2πσ2
√

1 − ρ2.
Here define q± and diagonalize the wave function, then discuss expectation values of

products of q. Write down the path integral form.
We can use equation (198) to check equation (175) for x1 = x2 = 0 and t1 = t2 = t

using the Schrödinger representation:

〈Ψ(t)|q(0, t0)q(0, t0)|Ψ(t)〉 =

∫
d3k1

(2π)3

∫
d3k2

(2π)3
〈Ψ(t)|q0(k1)q0(k2)|Ψ(t)〉 . (199)
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Taking the expectation value using equation (198) gives

〈Ψ(t)|q0(k1)q0(k2)|Ψ(t)〉 = σ2
1(k1)δ

3(k1 − k2) + ρσ2
1(k1)δ

3(k1 + k2) , (200)

where

σ2
1(k) ≡

|u|2(1 + |θ|2)
4k3

. (201)

Although |θ|2 can be much larger than 1, the net spectral density is |u|2/(2k3) because
of partial cancellation of the two terms in equation (200). When |θ|2 � 1, ρ → −1 and
q0(−k) ≈ −q0(k) as we will see below.

The parameter θ determines the correlations between the modes k and −k, i.e. the
squeezing. For (kt)2 � 1, θ = 1, ρ = 0 and there is no squeezing. When modes are
stretched far beyond the Hubble length, kt→ 0−, θ → −i∞ and ρ→ −1.

6.1.4 Wigner Function

The Wigner function is a generalization of the Schrödinger probability distribution to
include momentum — it gives a probability distribution on phase space. It is defined by

W (q,p, t) =

∫
d2r

(2π)2
e−ip·r Ψ∗(q − 1

2
r, t)Ψ(q + 1

2
r, t) . (202)

Here q, p, and r are two-vectors with components q1 = q0(k), q2 = q0(−k) and so on.
Carrying out the integral gives

W (q,p, t) =
1

π2
e−S/2 , S = q · M−1 · q + 4(p − p̄) · M · (p − p̄) , (203)

where

M = σ2

(
1 ρ
ρ 1

)
, p̄ = β(ρq1 − 2q2, ρq2 − 2q1) , β =

θi
4σ2(1 − ρ2)θr

. (204)

The Wigner function can be simplified with by applying two unitary transformations.
First, we take the following linear combinations of mode variables,

q± ≡ q1 ± q2√
2

, p± ≡ p1 ± p2√
2

, (205)

yielding

S = S+ + S− , S± =
q2
±

σ2(1 ± ρ)
+ 4σ2(1 ± ρ)[p± + β(±2 − ρ)q±]2 . (206)
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Next, we reduce the variables to four independent standard normal deviates (ξ±, η±)4:

q±√
σ2(1 ± ρ)

=
ξ± + η±

√
λ±√

1 + λ±
,

2p±
√
σ2(1 ± ρ) =

ξ±√
λ±(1 + λ±)

− η±λ±√
1 + λ±

. (207)

We introduced the auxiliary variables λ± defined by

λ± ≡ 1 +
1

2
γ2
± +

1

2
γ±

√
4 + γ2

± , γ± ≡ (±2 − ρ)

2(1 ∓ ρ)

θi
θr
. (208)

The Wigner function is now fully decoupled: S = ξ2
+ + ξ2

− + η2
+ + η2

−. All the correlations
of field values q± and momenta p± for the modes k and −k are encoded in equations
(207).

At early times, (kt)2 � 1, ρ = β = γ± = 0 so that q±/σ and 2σp± are independent
standard normal deviates. The harmonic oscillator ground state corresponds for all
modes to a minimum uncertainty wavepacket, σqσp = 1

2
.

At late times, kt → 0−, 1 + ρ → 0+ and the Bunch-Davies vacuum is strongly
squeezed. There are two effects apparent in equations (207). The factors of

√
1 ± ρ on

the left hand side stretch or shrink the distributions of (q±, p±) as ρ→ −1. In addition,
the field and momentum variables become strongly correlated when λ→ 0 or λ→ ∞.

To see these effects, consider first the + mode with phase space variables (q+, p+).
For this mode, in the limit ρ→ −1,

σ2(1 + ρ) =
|u|2δ3(0)

2k3
. (209)

The field value and its momentum are strongly correlated for this mode: as γ+ ≈
(3θi)/(4θr) → −∞,

λ+ → γ−2
+ → 0 . (210)

In this limit the ξ+ variates dominate q+ and p+, leading to a strong correlation:

q+√
σ2(1 + ρ)

≈ 2
√
σ2(1 + ρ)

|γ+|
p+ ≈ ξ+ . (211)

For the other mode, the standard deviation of the field is larger by a factor |θ|:

σ2(1 − ρ) =
|θ|2|u|2δ3(0)

2k3
. (212)

4Note, (ξ±, η±) are all real numbers
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For this mode, γ− ≈ −θ3
i /(4θr) → +∞ and

λ− → γ2
− → ∞ . (213)

Again the field value and its momentum are strongly correlated, now with an opposite
sign:

q−√
σ2(1 − ρ)

≈ −2
√
σ2(1 − ρ)

|γ−|
p− ≈ η− . (214)

From 〈q2
+〉 � 〈q2

−〉, it follows that |q1+q2| � |q1−q2| hence q2 ≈ −q1 or q0(−k) ≈ −q0(k)
as anticipated after equation (200).

Explain, based on the momenta and squeezing, why the field behaves classically as
found in equation (187).

Then: given a mode expansion for one set of canonical variables, are the a0(k) the
same for all sets of canonical variables? Is the vacuum definite?

Then: what if have not a pure vacuum, but a thermal density matrix?
Todo: Show a figure of the Wigner function for the plus and minus modes. discuss

how quantum fields may now be treated as random variables.
Todo: Check that the expectation values are canonical invariants, i.e. that one gets

the same inflationary perturbations using κ, q, or χ. After eq. (127) do scalar field in
unperturbed RW to show error. Fourier expansion p. 21. Restore κ = 8πG.

6.2 Tensor Mode

This section must be redone to get the correct time evolution by solving the operator
equations of motion as done for the scalar

The tensor mode fields are expanded as follows:

ψTT
ij (x, t) =

1

a(t)

∑

σ

∫
d3k

(2π)3/2
(2k)−1/2

[
eik·x g−(k, t)eσ, ij(k)aσ(k) + h.c.

]
,(215a)

πijTT(x, t) = a(t)
∑

σ

∫
d3k

(2π)3/2
(2k)−1/2

[
eik·x u−(k, t)eσ, ij(k)aσ(k) + h.c.

]
,(215b)

where u± ≡ a∂(a−1g±)/∂t and the sum is over the two gravitational wave polarizations or
helicity states. We assume that the Fock states for each mode (σ,k) provide a complete
basis for Hilbert space. The polarization basis tensors obey the relations

e∗σ, ij(k) = eσ, ij(−k) , eσ1, ij(k)e∗ ijσ2
(k) = δσ1σ2

,
∑

σ

eσ, kl(k)e∗ ijσ (k) = P
(i
kP

j)
l −

1

2
PklP

ij .

(216)
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The creation and annihilation operators obey the commutation relations

[aσ1
(k1), aσ2

(k2)] = 0 , [a†σ1
(k1), a

†
σ2

(k2)] = 0 , [aσ1
(k1), a

†
σ2

(k2)] = δσ1σ2
δ3(k1 − k2) .

(217)
These plus the Wronskian ġ+g−− g+ġ− = 2ik ensure that ψTT

ij and πijTT obey the correct
commutation relations. Moreover, the time evolution of g±(k, t) and u±(k, t) = ġ±−ηg±
ensure the correct evolution of the fields in the Heisenberg representation.

Equations (215) differ from the mode expansion in flat spacetime because of the
background spacetime curvature. This leads to a striking difference in the Hamiltonian
when expressed as a sum over modes:

HTT =
1

4

∑

σ

∫
d3k

k

{
(u2

− + k2g2
−)aσ(k)aσ(−k) + (u2

+ + k2g2
+)a†σ(k)a†σ(−k)

+(u−u+ + k2g−g+)
[
aσ(k)a†σ(k) + a†σ(k)aσ(k)

]}
. (218)

In flat spacetime, or in Robertson-Walker spacetime with k2 → ∞, g± → exp(±ikt) and
u± → ġ±, so that only the terms multiplied by u−u+ + k2g−g+ = 2k2 remain in the sum
over modes. The result is the usual energy (N + 1

2
)h̄ω per mode, with ω = k.

[Try Bogoliubov transformation to diagonalize HTT:

aσ(k) = uσ(k)bσ(k) + vσ(k)b†σ(−k) ,

a†σ(k) = u∗σ(k)b†σ(k) + v∗σ(k)bσ(−k) , (219)

where bσ(k) and b†σ(k) obey the same commutation relations as aσ(k) and a†σ(k).]
The vacuum state is defined so that aσ(k)|0〉 = 0 for any (σ,k) and is normalized so

that 〈0|0〉 = 0, implying 〈0|aσ1
(k1)a

†
σ2

(k2)|0〉 = δσ1σ2
δ3(k1 − k2). This gives equal-time

correlator

〈0|ψijTT(x, t)ψTT
kl (y, t)|0〉 =

[
P

(i
kP

j)
l −

1

2
PklP

ij

] ∫
d3k eik·(x−y)

[
g+(k, t)g−(k, t)

4ka2

]
.

(220)
The term in square brackets in the integrand is the power spectrum PTT(k, t).5 For
power-law inflation with λ < −1

2
and a = |t/t0|λ, (after restoring the correct units with

a factor 16πG) it becomes

PTT(k, t) = πG

(
3

1 − 2λ

)2 [
Γ(3/2 − λ)

Γ(5/2)

]2 ∣∣∣∣
t0
2

∣∣∣∣
2λ

k2λ−1 . (221)

For w = −1, λ → −1 and we obtain the expected scale-invariant spectrum 4πk3PTT =
(4π)2GH2 where H is the Hubble constant during inflation.

Introduction: Almost the entire difficulty of Hamiltonian gravity lies in finding the
correct Hamiltonian, or equivalently, eliminating the constrained degrees of freedom.

5The power spectrum is normalized so that the total power is
∫

PTT d3k and not
∫

PTT d3k/(2π)3.
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7 Appendix: Mode Expansion in Open Robertson-

Walker Spaces

7.1 Classical solutions

We consider an arbitrary Robertson-Walker background and we expand the spatial de-
pendence in eigenfunctions of the (Laplace-Beltrami) operator ∇2:

ψ‖(x, t) = a−1f±(k, t)Q(x;k) , sij(x, t) = a−1εijg±(k, t)Qij(x;k) . (222)

Here k are a set of eigenvalues labeling the appropriate scalar or tensor spherical har-
monics (e.g. k, l,m in spherical coordinates) and εij is a polarization tensor. The scalar
and tensor eigenfunctions obey6

∇2Q = (−k2 +K)Q , ∇2Qij = (−k2 + 3K)Qij . (223)
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