
1. Lecture 9:

• Last time, we initiated our study of 3D N = 2 SUSY and discussed the following

representations

• The chiral multiplet (D̄αΦ = 0), which is a function of θα and yµ = xµ − iθγµθ̄

Φ = φ(y) +
√

2θψ(y) + θ2F (y) = φ(x)− iθγµθ̄∂µφ(x)− 1

4
θ2θ̄2∂2φ(x) +

√
2θψ(x)

+
i√
2
θ2∂µψ(x)γµθ̄ + θ2F (x) . (1.1)

Similarly, we have an anti-chiral multiplet (DαΦ̄ = 0)

Φ̄ = φ̄(y)−
√

2θ̄ψ̄(y)− θ̄2F̄ (y) = φ̄(x) + iθγµθ̄∂µφ̄(x)− 1

4
θ2θ̄2∂2φ̄(x)−

√
2θ̄ψ̄(x)

− i√
2
θ̄2θγµ∂µψ̄(x) + θ̄2F̄ (x) . (1.2)

• We also found a (say U(1)) vector multiplet (in the WZ gauge)

V = θγµθ̄Aµ − iθ̄θσ − iθ2 · θ̄λ̄+ iθ̄2θλ− 1

2
θ2θ̄2D , (1.3)

which transforms as follows under gauge transformations

V → V +
i

2
(Λ− Λ̄) , (1.4)

with Λ chiral and Λ̄ anti-chiral.

• To get a field-strength, we want a gauge invariant superfield. Clearly, we get this from

setting

Σ =
i

2
DD̄V =

i

2
D̄DV , (1.5)

since, as you showed on the homework, DD̄Λ = D̄DΛ̄ = 0. This can also be shown by

contracting

εαβ
{
Dα, D̄β

}
= εαβ(−2iγµαβPµ) = 0 . (1.6)

• Note that since DD̄ = D̄D, we have

D2Σ = D̄2Σ = 0 . (1.7)

These are the equations satisfied by a conserved current superfield, with a conserved current

as the spin one component at O(θθ̄)... A SUSY generalization of a conserved current...
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• Indeed, we have

Σ = σ − θλ̄+ θ̄λ+
1

2
θγµθ̄εµνρF

νρ − iθθ̄D + · · · , (1.8)

where Fµν = ∂µAν − ∂νAµ. The current jµ = −1
2
εµνρF

νρ is sometimes called a “topological

current.” It is an abelian (U(1) current) that is conserved

∂µjµ = −εµνρ∂µ∂νAρ = 0 . (1.9)

How does this current act? It is instructive to use the fact that a free photon and a free

scalar are dual in 3D (in 4D, we have that a photon and a photon are dual)

∂µφ = εµνρF
νρ . (1.10)

Indeed, we have that ∂2φ = 0 is equivalent to εµνρ∂
µF νρ = 0 and εµνρ∂

ν∂ρφ ∼ ∂νFµν = 0.

• In a similar spirit, for a free massless chiral multiplet, we have that Φ̄Φ satisfies D̄2(Φ̄Φ) =

D2(Φ̄Φ) = 0. This is because, as you showed on the homework,

D̄2(Φ̄Φ) = (D̄2Φ̄)Φ ∼ (εαβ∂θ̄β∂θ̄αΦ̄)Φ , (1.11)

where “∼” denotes that we drop terms that are not zeroth order in the Grassmann variables.

Therefore, we have

D̄2(Φ̄Φ) ∼ F̄ φ , (1.12)

where we have again dropped higher-order terms in the Grassmann coordinates and neglected

an overall non-zero constant. Now, if we go back to the Lagrangian of a free massless chiral

superfield, we see that equations of motion for F imply

F = F̄ = 0 . (1.13)

As a result, we have that, to lowest order,

D̄2(Φ̄Φ) = 0 . (1.14)

Higher-order terms must also vanish: the SUSY variation of the lowest-order term is

proportional to the O(θ) and O(θ̄) terms. But these terms vanish since the SUSY variation

of zero is zero. Proceeding iteratively, we see that

D̄2(Φ̄Φ) = 0 . (1.15)
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Then, by computation, you can show that the θγµθ̄ component of Φ̄Φ is

jµ = iφ∂µφ̄− iφ̄∂µφ+ ψγµψ̄ , (1.16)

which is the Noether current for the u(1) symmetry under which Φ→ eiθΦ and Φ̄→ e−iθΦ̄.

• We can also write gauge invariant Lagrangians featuring these representations. For

example, we have 3D N = 2 SQED with Nf flavors if we take the Lagrangian to be

LSQED = −
∫
d4θ

Nf∑
i=1

(q̄ie2V qi + ¯̃qie−2V q̃i)−
1

g2

∫
d2θd2θ̄Σ2 =

1

g2

(1

2
D2 − 1

4
F µνFµν

− ∂µσ∂µσ + iλγµ∂µλ̄
)

+
∑
i

(|Fi|2 −Dµρ̄
iDµρi + iψiγ

µDµψ̄
i + |F̃i|2 −Dµ

¯̃ρiDµρ̃i

+ iψ̃iγ
µDµ

¯̃ψi − σ2(|ρi|2 + |ρ̃i|2)−D(|ρi|2 − |ρ̃i|2)− iσ(ψiψ̄
i − ψ̃i ¯̃ψi

−
√

2i(λψiρ̄
i − λψ̃i ¯̃ρi)−

√
2i(λ̄ψ̄iρi − λ̄ ¯̃ψiρ̃i)) . (1.17)

The flavor symmetry here is U(1)2 × SU(Nf )× SU(Nf ) (recall: this symmetry commutes

with SUSY and the gauge symmetry)... Where one of the U(1) factors is the topological

symmetry. Recall that flavor symmetry—as opposed to R-symmetry—commutes with SUSY

(both are generated by spin one currents and therefore have spin zero charges).

• The theory also has a U(1)R symmetry under which R(θ) = +1, and, say, R(σ) = 0,

R(ρi) = R(ρ̃i) = 1
2

(we fix the R charges of the rest of the fields in the multiplet by

demanding that the superfield transforms with a single overall phase; the conjugate multiplets

have opposite U(1)R charge).

• We would like to understand the U(1)R symmetry better. To do this, let’s take a simpler

theory first, the free massless chiral multiplet

Lkin = −
∫
d4θΦ̄Φ = |F |2 − ∂µφ̄∂µφ+ iψγµ∂µψ̄ . (1.18)

This theory has a U(1) flavor symmetry, J (with jµ ∈ Φ̄Φ), which rotates each component

field by the same phase, so J (φ) = J (ψ) = J (F ) = +1 (e.g., φ→ e−iαφ, and oppositely

for the conjugate fields).

• There is also a U(1)R symmetry under which R(θ) = +1, R(φ) = 1
2
, R(ψ) = −1

2
,

R(F ) = −3
2
. Actually, we can deform Rκ → R + κJ (with κ ∈ R) and still have an R

symmetry Rκ(θ) = +1, Rκ(φ) = 1
2
(1 + 2κ), R(ψ) = −1

2
(1− 2κ), R(F ) = −3

2
(1− 2

3
κ).... Still,

the one with κ = 0, R0, will turn out to be special as we will see.
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Note: there are a finite number of independent symmetries (just two) here...

• The reason R0 is special is that it is related to other symmetries the theory has. Which

symmetries? For example, we can dilate spacetime as follows xµ → eλxµ, where λ ∈ R (note

that eλ is not a phase). We say xµ has scaling dimension −1. Then, we get

S =

∫
d3x

∫
d4θΦ̄Φ =

∫
d3x

(
|F |2 − ∂µφ̄∂µφ+

i

2

(
ψγµ∂µψ̄ − ∂µψγµψ̄

))
→

∫
d3xe3λ

(
|F |2 − e−2λ∂µφ̄∂

µφ+ e−λ
i

2

(
ψγµ∂µψ̄ − ∂µψγµψ̄

))
(1.19)

To get a symmetry we should see if we can assign scaling transformations to the fields in

order to make S invariant... How can we do this? Well, we can clearly take

φ→ e−
λ
2φ , φ̄→ e−

λ
2 φ̄ , ψα → e−λψα , ψ̄α → e−λψ̄α , F → e−

3λ
2 F , F̄ → e−

3λ
2 F̄ .

(1.20)

This gives us a scaling symmetry since now S doesn’t depend on λ... We say ∆(φ) = 1
2
,

∆(ψ) = 1, and ∆(F ) = 3
2
. Since the theory is free, this is also true in the quantum theory.

Note that we could have derived the above also from the superspace integral by noting that

dθ → e−
λ
2 dθ.

• We say the above theory is scale invariant. Moreover, note that

R0(φ) =
1

2
= ∆(φ) . (1.21)

This is not a coincidence as we will see.

• To understand why, we first take a detour and note that the theory has more symmetry:

it is conformally invariant. This latter symmetry is equivalent to the existence of a traceless

stress-tensor. In our theory, we have

Tµν = −ηµνL+
∂L

∂(∂µφ)
∂νφ+

∂L
∂(∂µφ̄)

∂νφ̄+
∂L

∂(∂µψα)
∂νψα +

∂L
∂(∂µψ̄α)

∂νψ̄α

= ηµν∂ρφ̄∂
ρφ− ∂µφ̄∂νφ− ∂µφ∂νφ̄+

i

2
∂νψγµψ̄ −

i

2
ψγµ∂νψ̄ . (1.22)

Although the fermionic stress tensor is not symmetric, it can be improved (Exercise) so

that

T ′µν = ηµν∂ρφ̄∂
ρφ− ∂µφ̄∂νφ− ∂µφ∂νφ̄+

i

4
∂(νψγµ)ψ̄ −

i

4
ψγ(µ∂ν)ψ̄ . (1.23)

However, this is not traceless, since

T ′µµ = ∂ρφ̄∂
ρφ . (1.24)
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To make it traceless is easy

T̃µν = T ′µν −
1

2
(ηµν∂

2 − ∂µ∂ν)(φ̄φ) . (1.25)

The last term is an improvement term and now T̃ µµ = 0. Let us drop tilde from now on

and take T̃µν → Tµν .

• It is now easy to construct a conserved dilation current

jDµ = xνTµν , ∂µjµ = ηµνTµν + xν∂µTµν = 0 . (1.26)

Note this has the correct form to dilate space-time since we have δxµ = −εxµ, and

[−ixν∂ν , xµ] = −ixµ.

• Since T µµ = 0, we also have the following conserved currents

jµν = 2xµx
ρTρν − x2Tµν , ∂νjµν = 2δνµx

ρTρν + 2xµη
ρνTρν + 0− 2xνTµν − 0 = 0 . (1.27)

These may be more unfamiliar, but they give rise to so-called “special conformal” transfor-

mations, Kµ.

• The resulting algebra (in Lorentzian signature) is the conformal algebra and is isomorphic

to SO(3, 2). This has ten generators: Pµ, Lµν , D, Kµ. They satisfy the following algebra:

[D,Pµ] = iPµ , [D,Kµ] = −iKµ , [D,Lµν ] = 0 , [Kµ, Pν ] = 2i(ηµνD − Lµν) ,
[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) , [Pρ, Lµν ] = i(ηρµPν − ηρνPµ) ,

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) . (1.28)

• But we also have SUSY. So does this algebra close? Well, we know Super-Poincaré closes,

but here we have introduced new generators. In particular we need something of dimension

half from

[Kµ, Qα] ∼ γ β
µα Sβ , [Kµ, Q̄α] ∼ γ β

µα S̄β . (1.29)

These additional supercharges have dimension −1/2 (the corresponding current comes from

a linear moment of the supercurrent). So, we need to add these two complex charges to

the algebra. Then, we can check that

{Qα, S̄β} ∼ εαβR + · · · , {Q̄α, Sβ} ∼ −εαβR + · · · , (1.30)

where these relations contain additional charges in the ellipses (i.e., D and Lµν) and the

relations hold up to overall constants (for more details, see [1, 2]).
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• In particular, we see that there is a “special” superconformal R symmetry that is related

to the superconformal algebra. In the free case, this is exactly R0.

• What does this mean more precisely (after all, non-R superconformal charges are invariant

under flavor symmetries!!!)? Well, as we have argued above, conformal symmetry requires

the existence of a conserved and traceless Tµν (although, as we saw, there are generally

families of stress tensors, and only one member is traceless). Now, note that the R-current

is related to the stress tensor since

[Qα, R0;µ] = Sµα → γαβν {Q̄β, [Qα, R0;µ]} ∼ Tµν . (1.31)

Naturally, the superconformal R0;µ is in the same multiplet as the traceless stress tensor

(the only spin two θθ̄ component is the traceless stress tensor). Turning on a mixing with

flavor currents relates it to a non-traceless stress tensor.

• Exercise: Check this statement by writing down the Noether current for R0;µ and using

SUSY variations of the chiral and anti-chiral superfields.

• How do we find the superconformal R symmetry from the set of all possible choices? Well,

the superconformal R symmetry should commute with all continuous and discrete flavor

symmetries as well (since it is part of an algebra whose elements all commute with these

symmetries.... Note: this is a stronger statement than just saying that an R symmetry is

an automorphism of an algebra). In the interacting examples we study this will be enough.

The above statement will be absolutely crucial in our interacting examples!!! You

will work out an example of this idea on the homework.

• While it is too advanced for our module, a more general and useful algorithm for finding

the superconformal R symmetry in 3D N = 2 is presented in [3] and further developed

in [4].

• Comment: Since R0(φ) = 1/2 = ∆(φ), we can read the scaling dimensions of φn from

their R-charge. In this case, it gives the trivial result R(φn) = n/2 = ∆(φn). Usually, in

quantum field theory you need to normal order to define composite operators (as you have

seen in other modules).... For example, consider φ̄φ... This needs to be normal ordered

since

〈φ̄(x)φ(0)〉 =
1

x
. (1.32)

So, if we want to define limx→0 φ̄(x)φ(0), we need to subtract this divergence. That’s exactly

what normal ordering does... In the case of products of chiral operators (or products of

anti-chiral operators), this is completely unnecessary (note 〈φ(x)φ(0)〉 = 0)!
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• This is more generally true in an interacting theory:

R0(Oi) = ∆(Oi) , D̄αO = 0 . (1.33)

and R0(O1O2) = ∆(O1O2) = ∆(O1) + ∆(O2). So, these operators, as in QM, form a ring

under the usual multiplication of operators... Proving this is beyond the scope of the course

but follows from using the 2pt function to construct a norm 〈O(x)O(0)〉 and demanding

non-negativity of this norm (for the Q̄α descendant of a chiral operator... see [1] for more

details)...

• Comment: Note that the superconformal R symmetry is a genuine symmetry of the

theory as opposed to being just an automorphism of the algebra. For example, we could

consider turning on

W = mΦ2 + λΦ3 . (1.34)

This theory doesn’t have an R-symmetry (although the SUSY algebra has a U(1)R au-

tomorphism)... It can’t because the integration measure d2θ has R = −2, and we can’t

simultaneously have R(φ) = 1 and R(φ) = 2/3. It also doesn’t have a superconformal

R-symmetry... Note: We will study this theory in more detail in the next lecture...

• The above theory therefore cannot be both supersymmetric and conformal (the corre-

sponding algebra does not close if we include both SUSY and conformal generators). Indeed,

it is not conformal since W has scaling dimension two and so m has scaling dimension 1

and λ has scaling dimension 1/2. We will see soon using some fancy arguments that it is

necessarily SUSY (i.e., has a SUSY ground state even in the quantum theory).

• Let us now understand non-conformal theories better. The simplest thing to do is to

start with a free chiral multiplet and turn on

δW = mΦ2 . (1.35)

This is a mass term. It also breaks the superconformal R symmetry since R0(Φ2) = 1 6= 2

(i.e., R0(m) = 1). There is, however, an R-symmetry, R 1
2

(where R 1
2
(Φ) = 1).

• What does the propagator look like in this theory? Say we are in Euclidean space. Then,

we have (up to an overall factor)

〈φ(k)φ(−k)〉 =
1

k2 +m2
(1.36)
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Clearly, in the limit k � m, we have that

〈φ(k)φ(−k)〉 ∼ 1

k2
. (1.37)

This limit is called the UV (ultraviolet) or high energy / momentum limit. In this limit,

the theory looks like a free massless scalar. On the other hand, for k � m, we are in the

IR (infrared) or low energy / momentum limit. In this limit, we have that

〈φ(k)φ(−k)〉 ∼ 1

m2
, (1.38)

and there is no energy to excite modes of the field...

• It is useful to Fourier transform the above to position space. In particular, we have

〈φ(x)φ(y)〉, and, for |x− y| � m (the UV or short-distance limit), we have

〈φ(x)φ(y)〉 =
1

|x− y|
, |x− y| � m . (1.39)

On the other hand, in the IR (long-distance limit), we have

〈φ(x)φ(y)〉 = δ3(x− y) , |x− y| � m . (1.40)

The first limit is the CFT limit of the free scalar, while the second limit is clearly trivial

(there is no propagation of fields...)... The theory is completely massive... In particular, in

this regime, m provides a short-distance cut-off, so we never should consider the divergence

when x→ y (this divergence is an example of something called a local or “contact” term—it

is related to the UV definition of the theory) Exercise: Perform the Fourier transform of

the momentum-space 2-pt function and check that it interpolates between these two limits.

• Therefore, our theory interpolates between an SCFT in the UV and a trivial theory in

the IR. To codify this, we introduce an energy momentum scale, µ—this is the scale at

which we “observe” the theory... It is called the “RG scale”... When µ→ 0 we go to the

trivial theory and when µ→∞ we get the UV CFT... To see the relative importance of

couplings in the IR and UV, we define a dimensionless coupling

m̂ =
m

µ
. (1.41)

The importance of this coupling with scale is measured by the beta function

βm ≡ µ
∂m̂

∂µ
= −m̂ . (1.42)
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This means that as µ→ 0, m̂→∞ while for µ→∞, m̂→ 0... This is what we expect: in

the UV limit, the masses are not important... The opposite is true in the IR.

• Note also, in case it wasn’t clear, similar comments apply to the fermion. So, our RG flow

is a flow between the free massless chiral multiplet SCFT and the trivial theory in the IR.

• This discussion shows that the set of ideas behind renormalization really have nothing to

do in general with computing loop diagrams. In some cases, we may need to compute loop

diagrams in order to compute beta functions, but the idea and utility of the RG is much

greater than these particular applications.

• Next week, we will study interacting theories.
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