
1. Lecture 8

• Last time we studied the Berry connection associated with a spin-1/2 particle in a

magnetic field

H = ~B · ~σ . (1.1)

The corresponding curvature is

~V = ~∇× ~A =
~B

2B3
, (1.2)

where this is computed in the | ↑〉 state.

• We saw that we could embed the above system in N = (2, 2) SUSY via the following

Lagrangian

Lmass = −
∫
d4θΦ̄e−2θ̄σaθmaΦ = |φ′|2 + iψψ̄′ −mama|φ|2 +maψσaψ̄ , (1.3)

where ma plays the role of the xa SU(2)R triplet (note that we have solved the EOM of F

and set F = 0)... In particular, the mass parameters enter as a background gauge multiplet

(in analogy with the background magnetic field in the above example).

• Performing the usual transformation back to the Hamiltonian formulation gave us

H = |π|2 +mama|φ|2 + ψ̄maσaψ , (1.4)

The Fermionic operators can be arranged in creation and annihilation operators and yield

the space

|0〉 , ψ̄+|0〉 , ψ̄−|0〉 , ψ̄+ψ̄−|0〉 , (1.5)

where

ψ±|0〉 = 0 . (1.6)

On the space {|0〉, ψ̄+ψ̄−|0〉}, Hψ = ψ̄maσaψ vanishes. However, on the {ψ̄−|0〉, ψ̄+|0〉}
subspace we have

Hψψ̄α|0〉 = maσ β
aαψ̄β|0〉 . (1.7)

• On the homework, you studied the most general massive Lagrangian

L = −
∫
d4θϕ†e−2θ̄σaθmaϕ+

∫
d2θµϕ2 −

∫
d2θ̄µ̄ϕ2

= |φ′|2 + iψψ′† −m2|φ|2 +maψσaψ
† − 4|µ|2|φ|2 + µψ2 − µ̄ψ†2 , (1.8)
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where m =
√
mama. You showed that if m 6= 0 with µ = 0, there is a SUSY vacuum. You

also (optionally!) showed that if µ 6= 0 with m = 0, there is a SUSY vacuum (while this

does not hold for m,µ 6= 0).

• Today we want to move on to 2 + 1D from 0 + 1D. We started with N = 2 in 0 + 1 and

then moved on to N = (2, 2). We used this latter algebra to learn about Berry’s phase in

SQM. But this latter algebra is also useful because it connects more smoothly with 3D.

• For the rest of the module we will mostly be concerned with the 3D N = 2 algebra

{Qα, Q̄β} = 2γµαβPµ , γµαβ = γµβα , µ = 1, 2, 3 , (1.9)

Comment: This algebra looks quite similar to the N = (2, 2) SQM algebra, and we

will see why, but note there are also a few differences: here α, β are spacetime spinor

indices (as opposed to internal R-symmetry indices; note that in both cases, the symmetries

in question do not commute with the supercharges)... Also, there is no longer just the

Hamiltonian sitting on the RHS of (1.9). Instead, special relativity in 3D forces us to

include momentum generators in the spatial directions as well. Also, note that the gamma

matrices are symmetric, i.e., we have spin 1 or vector generators.

• There is now a U(1)R automorphism (SU(2)R is no longer present, it is replaced by a

spacetime symmetry)... We will come back again and again to the important role played by

U(1)R in the coming lectures.

• An aside on spinors: spinors are in the double cover of the space-time symmetry group. If

we are in Euclidean space, then this is the double cover of SO(3), i.e., SU(2) = Spin(3). If we

are in Lorentzian space, then this is the double cover of SO(2, 1), i.e., SL(2,R) = Spin(2, 1).

We will spend much of the remainder of this module in Lorentzian signature and take

γµαβ =
(
σ0, σ1, σ3

)
. (1.10)

where

σ0
αβ = −

(
1 0

0 1

)
, σ1

αβ =

(
0 1

1 0

)
, σ3

αβ =

(
1 0

0 −1

)
. (1.11)

The following generators generate SL(2, R)

εβγσ0
αγ = σ0β

α =

(
0 1

−1 0

)
, εβγσ1

αγ = σ1β
α =

(
1 0

0 −1

)
, εβγσ3

αγ = σ3β
α =

(
0 −1

−1 0

)
. (1.12)
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Note that

(γµ)βα(γν)λβ = ηµνδλα + εµνρ(γρ)
λ
α . (1.13)

The main difference is that SO(2, 1) has real 2-component spinors while SU(2) does not...

The supercharges form a complex 2 component spinor anyway, so can use either space-time

symmetry group. See Polchinski volume II for a discussion of spinors in various dimensions...

• Both this 3D N = 2 algebra and the N = (2, 2) SQM algebra can be obtained via

dimensional reduction of the 4D N = 1 SUSY algebra.

• What is dimensional reduction? It is a process to start from some quantum system

in d space-time dimensions and reduce it to a quantum system in d − r < d space-time

dimensions.

• Suppose these r dimensions form some compact manifold, Mr (e.g., Mr = T r = S1 ×
· · · × S1). Suppose Mr has some characteristic length-scale, L (this could be the period of

the circles in the T r). Then, quantum mechanics tells us that p = ni/L for ni ∈ Z (and

i = 1, · · · , r). As we take L→ 0, p→∞ and so too the energy... Therefore, in this limit,

the only finite energy configurations are those that are independent of the extra dimensions...

These have ni = 0... Specializing to these modes that have no dependence on Mr, we get

the dimensional reduction. This is equivalent to setting momentum to zero in the internal

dimensions....

• Note that symmetries like rotations of these internal dimensions become internal symme-

tries of the dimensionally reduced theory (will see this below).

• Let us return to 4D→3D SUSY. There are unfortunately many conventions at play here...

To get to 3d N = 2, we start in 4D from the Wess and Bagger conventions

{Qα, Q̄α̇} = 2σµαα̇Pµ , (1.14)

σ0
αβ̇

= −

(
1 0

0 1

)
, σ1

αβ̇
=

(
0 1

1 0

)
, σ2

αβ̇
=

(
0 −i
i 0

)
,

σ3
αβ̇

=

(
1 0

0 −1

)
. (1.15)

we have here both “dotted” (e.g., “α̇”) and “undotted” (e.g., “α”) spinor indices here. This

is because Spin(3, 1) = SL(2,C), so twice as many types of spinor reps. Similarly, for the

Euclidean case, Spin(4) = SU(2)× SU(2), so there are twice as many types of spinor reps.
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• Let us now reduce by, say, setting to zero momentum in the x2 direction of R4 → R3×S1

(where x2 parameterizes the S1). This means, we set P2 = 0 and obtain the algebra we had

for 3D N = 2 (we drop the dotted index because in 3D there is no distinction between

dotted and undotted).

• To get to our N = (2, 2) SQM, we would start from a slightly different convention for

our σµαα̇, e.g.,

σ0
αα̇ =

(
0 −1

1 0

)
, σ1

αα̇ =

(
i 0

0 i

)
, σ2

αα̇ =

(
1 0

0 −1

)
, σ3

αα̇ =

(
0 1

1 0

)
. (1.16)

We would then set P 3 = P 2 = P 1 = 0. The spin group of the transverse 3D become

generators of the SU(2)R symmetry of the quantum mechanics...

• Back to QFT: roughly, we should treat free quantum fields as operator valued functions

of space obeying equal time commutation relations (in the Heisenberg picture)

[ϕa(xi, t), ϕb(yi, t)] = [πa(xi, t), π
b(yi, t)] = 0 , [πb(xi, t), φa(yi, t)] = −iδ(2)(xi − yi)δba .

(1.17)

• Since we are studying objects that depend on both space and time, we should modify

our superspace differential operators. They become

Qα = ∂θα + iγµβα θ̄β∂µ , Q̄α = −∂θ̄α − iγµβα θβ∂µ . (1.18)

where we raise and lower with εαβ and εαβ as follows

εαβθβ = θα , εαβ θ̄β = θ̄α , εαβθ
β = θα , εαβ θ̄

β = θ̄α . (1.19)

Therefore, we have

(ψχ) = −χ̄ψ̄ . (1.20)

The SUSY covariant derivatives are now

Dα = ∂θα − iγµβα θ̄β∂µ , D̄α = −∂θ̄α + iγµβα θβ∂µ . (1.21)

These quantities satisfy

{Dα, D̄β} = −2iγµαβ∂µ , {Qα, Q̄β} = 2iγµαβ∂µ . (1.22)

Other useful identities include (Exercise!)

DαD̄α = D̄αDα , {Dα,Dβ} = · · · = 0 . (1.23)
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We also have the SUSY integration definitions∫
d2θθ2 = 1 ,

∫
d2θ̄θ̄2 = −1 ,

∫
d4θθ2θ̄2 = −1 . (1.24)

• What are some representations of the 3D N = 2 SUSY algebra? Well, we again have our

friend the chiral multiplet, which is a function of θα and yµ = xµ − iθγµθ̄

Φ = φ(y) +
√

2θψ(y) + θ2F (y) = φ(x)− iθγµθ̄∂µφ(x)− 1

4
θ2θ̄2∂2φ(x) +

√
2θψ(x)

+
i√
2
θ2∂µψ(x)γµθ̄ + θ2F (x) . (1.25)

Similarly, we have an anti-chiral multiplet

Φ̄ = φ̄(y)−
√

2θ̄ψ̄(y)− θ̄2F̄ (y) = φ̄(x) + iθγµθ̄∂µφ̄(x)− 1

4
θ2θ̄2∂2φ̄(x)−

√
2θ̄ψ̄(x)

− i√
2
θ̄2θγµ∂µψ̄(x) + θ̄2F̄ (x) . (1.26)

Note that these multiplets satisfy 0 = DαD̄αΦ = D̄αDαΦ, and similarly for Φ̄.

• We also have our friend the U(1) vector multiplet

V = θγµθ̄Aµ − iθ̄θσ − iθ2 · θ̄λ̄+ iθ̄2θλ− 1

2
θ2θ̄2D , (1.27)

This representation with the lower components vanishing is sometimes called the “Wess-

Zumino” (or WZ) gauge... Notice that now the gauge field transforms as a 3 of SO(2, 1)

(or SO(3) in Euclidean space) while the scalar is a singlet (this is the A2 direction of the

4D gauge field). Where again we have used

V → V +
i

2
(Λ− Λ̄) , (1.28)

with Λ chiral and Λ̄ anti-chiral (i.e., DαΛ = D̄αΛ̄ = 0).

• To get a field-strength, we want a gauge invariant superfield. Clearly, we get this from

setting

Σ =
i

2
DD̄V =

i

2
D̄DV , (1.29)

since D̄DΛ = D̄DΛ̄ = D̄DΛ̄ = D̄DΛ̄ = 0. Note that since DD̄ = D̄D, we have

D2Σ = D̄2Σ = 0 . (1.30)
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These are the equations satisfied by a conserved current superfield... A SUSY generalization

of a conserved current

Σ = σ − θλ̄+ θ̄λ+
1

2
θγµθ̄εµνρF

νρ − iθθ̄D + · · · , (1.31)

where Fµν = ∂µAν − ∂νAµ. The current jµ = −1
2
εµνρF

νρ is sometimes called a “topological

current.” It is an abelian (U(1) current) that is conserved

∂µjµ = εµνρ∂
µ∂νAρ = 0 . (1.32)

How does this current act? It is instructive to use the fact that a free photon and a free

scalar are dual in 3D (in 4D, we have that a photon and a photon are dual)

∂µφ = εµνρF
νρ . (1.33)

Indeed, we have that ∂2φ = 0 is equivalent to εµνρ∂
µF νρ = 0 and εµνρ∂

ν∂ρφ ∼ ∂νFµν = 0.

• For a U(1) gauge group, φ is a periodic scalar (i.e., φ ∼ φ+ 2π`−
1
2 ). This is because there

can be non-trivial flux through two-cycles in a 3D spacetime, and the scalar winds through

the dual 1 cycle (e.g., think of T 3). Note: the current in (1.33) is for a shift symmetry

φ→ φ+ κ.

• Toward the end of the module, we will, in some sense, see how this duality extends to

interacting SUSY theories.

• More generally, a current superfield looks as follows

J = J + iθj + iθ̄j̄ − θγµθ̄jµ + iθθ̄K + · · · , (1.34)

It is real and satisfies D2J = D̄2J = 0. The component version of this is ∂µjµ = 0. We

see this as follows

∂αβ(DαD̄β +DβD̄α)J ∼ {Dα, D̄β}(DαD̄β +DβD̄α)J = (DαD̄βDαD̄β + D̄βDαDαD̄β

+ DαD̄βDβD̄α + D̄βDαDβD̄α)J = (Dα{D̄β, Dα}D̄β + D̄β[DαDα, D̄β]

+ Dα{D̄β, Dβ}D̄α + [D̄β, DαDβ]D̄α)J
= (Dα{D̄β, Dα}D̄β + D̄βDα{Dα, D̄β} − D̄β{Dα, D̄β}Dα

+ {D̄β, Dα}DβD̄α)J = 2({Dα, D̄β}D̄βDα)J (1.35)

On the other hand, we also clearly have

∂αβ(DαD̄β +DβD̄α)J ∼ {Dα, D̄β}(DαD̄β +DβD̄α)J = (DαD̄βDαD̄β + D̄βDαDαD̄β
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+ DαD̄βDβD̄α + D̄βDαDβD̄α)J = (Dα{D̄β, Dα}D̄β + [D̄β, DαDα]D̄β

+ Dα{D̄β, Dβ}D̄α + [D̄β, DαDβ]D̄α)J
= (Dα{D̄β, Dα}D̄β + {D̄β, Dα}DαD̄β −Dα{D̄β, Dα}D̄β

+ {D̄β, Dα}DβD̄α)J = 2({D̄β, Dα}DαD̄β)J (1.36)

Therefore, we see that ∂µjµ = 0 since

∂αβ[Dα, D̄β]J ∼ ∂αβ∂θα∂θ̄βJ + · · · = 0 , (1.37)

where the ellipses contain higher-order terms in the Grassman coordinates.

• We can now consider various SUSY invariant Lagrangians. The vector multiplet kinetic

terms become

Lvec = − 1

g2

∫
d2θd2θ̄Σ2 =

1

g2

(
1

2
D2 − 1

4
F µνFµν + iλγµ∂µλ̄

)
. (1.38)

• For a free massless chiral multiplet, the Lagragian takes the form

Lkin = −
∫
d4θΦ̄Φ = |F |2 − ∂µφ̄∂µφ+ iψγµ∂µψ̄ . (1.39)

Note that J = Φ̄Φ is a conserved current multiplet

D̄2(Φ̄Φ) = D̄2Φ̄Φ ∼ F̄Φ + · · · = 0 ,

D2(Φ̄Φ) = Φ̄D2Φ ∼ Φ̄F + · · · = 0 . (1.40)

In the last line, we have used the EOM of F (since the ellipses are higher-order in the

Grassmann coordinates, they also vanish by EOM... This is useful for you to check

explicitly!). Exercise: Prove this is the current multiplet for the U(1) flavor symmetry

under which Φ→ eiαΦ (and Φ̄→ e−iαΦ̄).

• We gauge this symmetry by introducing a vector multiplet

L = −
∫
d4θΦ̄e2qV Φ = −

∫
d4θ(Φ̄Φ− 2qV Φ̄Φ + 2q2V 2Φ̄Φ) = |F |2 −Dµφ̄D

µφ+ iψγµDµψ̄ .

(1.41)

The term linear in V is the usual linear gauging of a global symmetry (i.e., the completion

of Aµjµ).

• We get 3D N = 2 SQED with Nf flavors if we take the Lagrangian to be

LSQED = Lvec + Lmatter , (1.42)
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where

LSQED = −
∫
d4θ

Nf∑
i=1

(q̄ie2V qi + ¯̃qie−2V q̃i)−
1

g2

∫
d2θd2θ̄Σ2 =

1

g2

(1

2
D2 − 1

4
F µνFµν

− ∂µσ∂µσ + iλγµ∂µλ̄
)

+
∑
i

(|Fi|2 −Dµρ̄
iDµρi + iψiγ

µDµψ̄
i + |F̃i|2 −Dµ

¯̃ρiDµρ̃i

+ iψ̃iγ
µDµ

¯̃ψi − σ2(|ρi|2 + |ρ̃i|2)−D(|ρi|2 − |ρ̃i|2)− iσ(ψiψ̄
i − ψ̃i ¯̃ψi

−
√

2i(λψiρ̄
i − λψ̃i ¯̃ρi)−

√
2i(λ̄ψ̄iρi − λ̄ ¯̃ψiρ̃i)) . (1.43)

The flavor symmetry here is U(1)2 × SU(Nf )× SU(Nf ) (recall: this symmetry commutes

with SUSY and the gauge symmetry)... Where one of the U(1) factors is the topological

symmetry.

• Let us now better understand the symmetries of the free massless chiral multiplet

L = −
∫
d4θΦ̄Φ = |F |2 − ∂µφ̄∂µφ+ iψγµ∂µψ̄ . (1.44)

We already saw that we have a U(1) flavor symmetry under which Φ → e−iαΦ (and

Φ̄→ e−iαΦ̄... so all components transform in the same way under supersymmetry... can see

this from the structure of the J superfield). In particular, we have

Qα → Qα , [J , Qα] = 0 , J (Qα) = 0 ,

φ → e−iαφ , [J , φ] = φ , J (φ) = +1 ,

ψ → e−iαψ , [J , ψα] = ψα , J (ψα) = +1 ,

F → e−iαF , [J , F ] = ψα , J (F ) = +1 . (1.45)

We also have a U(1)R symmetry as well: under this symmetry

Qα → eiβQα , [R,Qα] = −Qα , R(Qα) = −1 ,

φ → e−i
β
2 φ , [R, φ] =

1

2
φ , R(φ) =

1

2
,

ψα → ei
β
2ψα , [R,ψα] = −1

2
ψα , R(ψα) = −1

2
,

F → ei
3β
2 F , [R,F ] =

3

2
F , R(F ) = −3

2
. (1.46)

• What other symmetries do we have? Well, we have superpoincaré: Qα, Q̄α, Pµ, Lµν ... We

have also seen the higher spin symmetries in lecture 1... However, we have another set of

symmetries as well....
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• For example, we can dilate spacetime as follows xµ → eλxµ, where λ ∈ R (note that eλ is

not a phase). We say xµ has scaling dimension −1. Then, we get

S =

∫
d3x

∫
d4θΦ̄Φ =

∫
d3x

(
|F |2 − ∂µφ̄∂µφ+ iψγµ∂µψ̄

)
→

∫
d3xe3λ(|F |2 − e−2λ∂µφ̄∂

µφ+ e−λψγµ∂µψ̄) (1.47)

To get a symmetry we should see if we can assign scaling transformations to the fields in

order to make S invariant... How can we do this? Well, we can clearly take

φ→ e−
λ
2φ , φ̄→ e−

λ
2 φ̄ , ψα → e−λψα , ψ̄α → e−λψ̄α , F → e−

3λ
2 F , F̄ → e−

3λ
2 F̄ .

(1.48)

This gives us a scaling symmetry since now S doesn’t depend on λ... We say ∆(φ) = 1
2
,

∆(ψ) = 1, and ∆(F ) = 3
2
. Since the theory is free, this is also true in the quantum theory.

Note that we could have derived the above also from the superspace integral by noting that

dθ → e−
λ
2 dθ.

• Note that

R(φ) =
1

2
= ∆(φ) . (1.49)

As we will see next week, this relation is not a conicidence.

• Moreover, the above scaling symmetry is part of a larger group of symmetries: the

superconformal group. We will discuss aspects of the above R symmetry (called the

superconformal R-symmetry) next week. We will also discuss breaking of this symmetry.
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