1. Lecture 8

e Last time we studied the Berry connection associated with a spin-1/2 particle in a

magnetic field

o]
Qi

H= (1.1)

The corresponding curvature is

where this is computed in the | 1) state.

e We saw that we could embed the above system in N' = (2,2) SUSY via the following

Lagrangian
Lonass = = / d'0De 70D = ¢/ + iy — m ma| ¢ +m Yot (1.3)

where m® plays the role of the 2% SU(2)g triplet (note that we have solved the EOM of F'
and set F' = 0)... In particular, the mass parameters enter as a background gauge multiplet

(in analogy with the background magnetic field in the above example).

e Performing the usual transformation back to the Hamiltonian formulation gave us
H = 7> +m®ma|o|* + vm o) (1.4)

The Fermionic operators can be arranged in creation and annihilation operators and yield

the space
0) . ¥4l0),  ©-|0),  ¥ud-|0) (1.5)
where
Palo) =0 (16)
On the space {|0),¢,1_|0)}, Hy = ¢ym®s,1) vanishes. However, on the {1_|0),v,|0)}

subspace we have
Hyha|0) = m?o,21s(0) - (1.7)

e On the homework, you studied the most general massive Lagrangian

L = —/d49Q0T6_290a9ma(,0+/d29,UQ02—/dQQ[LQDQ
= ¢ + iyt — m? o + m Yo, bt — 4| ulo]? + pp? — ™ (1.8)

1



where m = /m%m,. You showed that if m # 0 with p = 0, there is a SUSY vacuum. You
also (optionally!) showed that if p # 0 with m = 0, there is a SUSY vacuum (while this
does not hold for m, u # 0).

e Today we want to move on to 2+ 1D from 0+ 1D. We started with N'=2 in 0+ 1 and
then moved on to N = (2,2). We used this latter algebra to learn about Berry’s phase in

SQM. But this latter algebra is also useful because it connects more smoothly with 3D.
e For the rest of the module we will mostly be concerned with the 3D A = 2 algebra

{QanB} = Q’YZﬁPM ’ 75[5 = ,yga I N = 17273 ) (19)
Comment: This algebra looks quite similar to the N/ = (2,2) SQM algebra, and we

will see why, but note there are also a few differences: here «, are spacetime spinor
indices (as opposed to internal R-symmetry indices; note that in both cases, the symmetries
in question do not commute with the supercharges)... Also, there is no longer just the
Hamiltonian sitting on the RHS of . Instead, special relativity in 3D forces us to
include momentum generators in the spatial directions as well. Also, note that the gamma

matrices are symmetric, i.e., we have spin 1 or vector generators.

e There is now a U(1)gr automorphism (SU(2)g is no longer present, it is replaced by a
spacetime symmetry)... We will come back again and again to the important role played by

U(1)g in the coming lectures.

e An aside on spinors: spinors are in the double cover of the space-time symmetry group. If
we are in Euclidean space, then this is the double cover of SO(3), i.e., SU(2) = Spin(3). If we
are in Lorentzian space, then this is the double cover of SO(2,1), i.e., SL(2,R) = Spin(2, 1).

We will spend much of the remainder of this module in Lorentzian signature and take

Vg =(0%0',0°%) . (1.10)

1 0 01 1 0
o, = — . ol = R . 1.11
o 0 1 1o N0 -1 (L1)

The following generators generate SL(2, R)

where

0 1 1 0 0 -1
657037 =% = , EBA/O'CIW =gl = , eﬁvafw = = . (1.12)
-1 0 0 —1 -1 0



Note that
(F)a(")5 = 000+ P (yp)a - (1.13)
The main difference is that SO(2,1) has real 2-component spinors while SU(2) does not...

The supercharges form a complex 2 component spinor anyway, so can use either space-time

symmetry group. See Polchinski volume II for a discussion of spinors in various dimensions...

e Both this 3D A = 2 algebra and the N = (2,2) SQM algebra can be obtained via
dimensional reduction of the 4D A =1 SUSY algebra.

e What is dimensional reduction? It is a process to start from some quantum system
in d space-time dimensions and reduce it to a quantum system in d —r < d space-time

dimensions.

e Suppose these 7 dimensions form some compact manifold, M, (e.g., M, =T" = S x
.-+ x S1). Suppose M, has some characteristic length-scale, L (this could be the period of
the circles in the 77). Then, quantum mechanics tells us that p = n;/L for n; € Z (and
i=1,---,r). As we take L — 0, p — oo and so too the energy... Therefore, in this limit,
the only finite energy configurations are those that are independent of the extra dimensions...
These have n; = 0... Specializing to these modes that have no dependence on M,., we get
the dimensional reduction. This is equivalent to setting momentum to zero in the internal

dimensions....

e Note that symmetries like rotations of these internal dimensions become internal symme-

tries of the dimensionally reduced theory (will see this below).

e Let us return to 4D—3D SUSY. There are unfortunately many conventions at play here...
To get to 3d N = 2, we start in 4D from the Wess and Bagger conventions

{Qaa Qo’z} - 20—5aPy 5 (114)
10 01 0 —1
o, = — . ol = . o0l = ,
1 0
E - . 1.15
af 0 —1 ( )

we have here both “dotted” (e.g., “4”) and “undotted” (e.g., “a”) spinor indices here. This
is because Spin(3,1) = SL(2,C), so twice as many types of spinor reps. Similarly, for the
Euclidean case, Spin(4) = SU(2) x SU(2), so there are twice as many types of spinor reps.
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e Let us now reduce by, say, setting to zero momentum in the 2?2 direction of R* — R3 x S!
(where z? parameterizes the S'). This means, we set P, = 0 and obtain the algebra we had
for 3D N =2 (we drop the dotted index because in 3D there is no distinction between
dotted and undotted).

e To get to our N' = (2,2) SQM, we would start from a slightly different convention for

o
our o, ;, e.g.,

0 -1 ;0 1 0 0 1
Uga = ) Uéa = (! ] Uia = ) Uza = . (1.16)
1 0 0 1 0 —1 1 0

We would then set P? = P? = P! = 0. The spin group of the transverse 3D become

generators of the SU(2)r symmetry of the quantum mechanics...

e Back to QFT: roughly, we should treat free quantum fields as operator valued functions

of space obeying equal time commutation relations (in the Heisenberg picture)

[Pa(@i,t), 0oy )] = [7 (s, ), 7 (g, )] = 0, [7°(xi, 1), dalyss )] = —i0P) (s — 1:)0, .
(1.17)

e Since we are studying objects that depend on both space and time, we should modify

our superspace differential operators. They become
Q= Opa + 77050, ,  Qu = —ga — i7"7050, . (1.18)
where we raise and lower with ¢’ and e,z as follows
P05 =0, PO =0", b’ =00, ecup0’ =0, . (1.19)

Therefore, we have
(¥x) = =X . (1.20)

The SUSY covariant derivatives are now
D, = Opa — wgﬁéﬁaﬂ , Do = —0go +in" ﬂ&g@ (1.21)
These quantities satisfy
{Do, Ds} = =2iv530, ,  {Qa, Qs} = 20450, (1.22)
Other useful identities include (Exercise!)
DD, =DD,, {Da,Ds}=---=0. (1.23)
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We also have the SUSY integration definitions

/d2992 =1, /d2§§2 =—1, /d4062§2 =—1. (1.24)

e What are some representations of the 3D N = 2 SUSY algebra? Well, we again have our
friend the chiral multiplet, which is a function of 6, and y* = x* — ify*0
_ 1 ..
¢ = 6y) +V20U(y) + O°F(y) = o(w) — i01"00,6(x) — ;0°°P¢(x) + V20U ()

255920M¢(x)yue-%9251x). (1.25)

Similarly, we have an anti-chiral multiplet

_|_

B = Gly) V) — PF(y) = 5a) +i6100,6(s) — 10°P05(x) — VI (z)
- %ezefyﬂaﬂw(ag) + 0?F(z) . (1.26)
Note that these multiplets satisfy 0 = D*D,® = D*D,®, and similarly for ®.
e We also have our friend the U(1) vector multiplet
V = 048, — 000 — i6® - G + 6207 — %QZ(JQD | (1.27)

This representation with the lower components vanishing is sometimes called the “Wess-
Zumino” (or WZ) gauge... Notice that now the gauge field transforms as a 3 of SO(2,1)
(or SO(3) in Euclidean space) while the scalar is a singlet (this is the A, direction of the
4D gauge field). Where again we have used

V—>V+%(A—/_X) , (1.28)
with A chiral and A anti-chiral (i.e., DoA = DA = 0).

e To get a field-strength, we want a gauge invariant superfield. Clearly, we get this from

setting . .
5 = %DDV - %DDV , (1.29)

since DDA = DDA = DDA = DDA = 0. Note that since DD = DD, we have

DY =D*T =0. (1.30)



These are the equations satisfied by a conserved current superfield... A SUSY generalization

of a conserved current
_ 1 _
S =0 = OA+0A+ 5070, 7 — 06D + - (1.31)

where F), = 0,A, — 0,A,. The current j, = —%eWpF YP is sometimes called a “topological

current.” It is an abelian (U(1) current) that is conserved
OMj, = €up0t0" AP =0 . (1.32)

How does this current act? It is instructive to use the fact that a free photon and a free

scalar are dual in 3D (in 4D, we have that a photon and a photon are dual)
O = €. (1.33)
Indeed, we have that 9%°¢ = 0 is equivalent to €,,,0"F"? =0 and €,,,0"0°¢ ~ " F,, = 0.

e For a U(1) gauge group, ¢ is a periodic scalar (i.e., ¢ ~ ¢+27T€_%). This is because there
can be non-trivial flux through two-cycles in a 3D spacetime, and the scalar winds through
the dual 1 cycle (e.g., think of 7%). Note: the current in is for a shift symmetry
O — ¢+ K.

e Toward the end of the module, we will, in some sense, see how this duality extends to

interacting SUSY theories.
e More generally, a current superfield looks as follows
J = J+i0j +i0j — 005, + 00K + - | (1.34)

It is real and satisfies D27 = D27 = 0. The component version of this is 9*j, = 0. We

see this as follows

9°#(DaDg+ DgDy)J ~ {D* D°}(D,Ds+ D3yDo)J = (D*D°D,Ds + D’D*D, Dy
+ D*DPDgD, + D’D°D3D,)J = (D*{D", D,}Ds + D°|D*D,, D]
+ D*{D? Ds}D,, + D", D*Ds]D,)J
= (D*{D”,D,}Ds + D’D*{D,, Dg} — D’{D* Ds} D,
+ {DP,D*}DyD.)J = 2({D* D°}DsD,)T (1.35)
On the other hand, we also clearly have

0*°(DoDg + DgDy)J ~ {D% D°Y(DoDg+ DsDo)J = (D*D’D,Ds + D°D*D,Dg
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+ D*DPDyD,+ D°D*DsD,)T = (D*{D" D, }Ds + [D°, D*D,] Dy
+ D*{DP? Ds}D,, + D", D*Ds]D,)J

= (D*{D” ,D,}Ds+{D? D*}D,Dg — D*{D? D,}Dg

+ {DP,D*}DsD.,)J = 2({D?, D*}D,Ds)T (1.36)

Therefore, we see that 0*j, = 0 since
0P [De, Dg|T ~ 0% 0paOps T +--- =0, (1.37)
where the ellipses contain higher-order terms in the Grassman coordinates.

e We can now consider various SUSY invariant Lagrangians. The vector multiplet kinetic

terms become

1 _ 1 /1 1 . .
Evec = —? /d29d2922 = g_2 (§D2 — ZFM FMV -+ M”y“@u)\) . (138)

e For a free massless chiral multiplet, the Lagragian takes the form
Lyin = — /d49<T><I> = |F|* — 0,00" ¢ + i)y, . (1.39)

Note that J = ®® is a conserved current multiplet

D*(®®) = DO~ FP+.---=0,
D*(®®) = ®D*®~PF +---=0. (1.40)

In the last line, we have used the EOM of F (since the ellipses are higher-order in the
Grassmann coordinates, they also vanish by EOM... This is useful for you to check
explicitly!). Exercise: Prove this is the current multiplet for the U(1) flavor symmetry
under which ® — e@® (and ® — e~ "*P).

e We gauge this symmetry by introducing a vector multiplet

L=— / d*0Pe®V P = — / (DD — 2qV P + 2¢°V?®P) = |F|* — D,pD" ¢ + it)y" D, .
(1.41)

The term linear in V' is the usual linear gauging of a global symmetry (i.e., the completion

of A*j,).
e We get 3D N =2 SQED with N; flavors if we take the Lagrangian to be
'CSQED - 'Cvec + Ematter ) (142>
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where

Ny
. _ 1 _ 1,1 1
Lsgrp = — / d*0> (@ g+ qea) - 7 / 204205 = ?(502 — ",
=1

— oo+ M»y“auﬂ) + Y (IF[* = Dup' D" p; + ity Do) + | Fy|* — D,p DV i

+ iy Dyl — *(lpil* +1p:l") = D(Ipil” = 17il*) — i (0" — did
— V2P = M) — V2D ps — M) (1.43)

The flavor symmetry here is U(1)? x SU(N;) x SU(Ny) (recall: this symmetry commutes
with SUSY and the gauge symmetry)... Where one of the U(1) factors is the topological

symmetry.
e Let us now better understand the symmetries of the free massless chiral multiplet
L= —/d49<f><13 = |F|* — 0,00"¢ + ipy" 1) . (1.44)

We already saw that we have a U(1) flavor symmetry under which ® — e ® (and
® — e7d... so all components transform in the same way under supersymmetry... can see

this from the structure of the J superfield). In particular, we have

Qo = Qa, [J,Q=0, J(Qa)=0,

¢ = e, [Tel=0, JT@)=+1,

o= e, [Te] =ta, JTWa)=+1,

F — e™F, [J,Fl=t., JF)=+1. (1.45)

We also have a U(1)g symmetry as well: under this symmetry

Qa — eiﬁQa ) [R7 Qa] :1 _Qa ) R(Qoi) =-1 )
Qb — e_i§¢ ) [Ra ¢] = §¢ ) R(Qb) = 5 )
. 1 1
wa — 62%@% ) [Rv ¢a] = _Ewa ) R(’¢o¢) = _5 )
F - ¢%F, [RF]= gF . R(F)= —; . (1.46)

e What other symmetries do we have? Well, we have superpoincaré: Qu,Qa, Py, Lyy... We
have also seen the higher spin symmetries in lecture 1... However, we have another set of

symmetries as well....



e For example, we can dilate spacetime as follows x# — e*x#, where A € R (note that e is

not a phase). We say z* has scaling dimension —1. Then, we get

/ d*x / d*0Dd = / &a (|F]P — 0,00"¢ + ipy*0,0)
(‘F‘Q 2)\8 (b(?“(b-l-e /\w,)//‘a‘uw) (147)

To get a symmetry we should see if we can assign scaling transformations to the fields in

order to make S invariant... How can we do this? Well, we can clearly take
DY - Ao Y — AT _3 = EPg
p—e 2, 9g—=e 20, Yo—e Vo, Yoa—me Y, FaeF, F—e 2 F.

(1.48)
1
29
A(y) =1, and A(F) = 3. Since the theory is free, this is also true in the quantum theory.

This gives us a scaling symmetry since now S doesn’t depend on A... We say A(¢) =

Note that we could have derived the above also from the superspace integral by noting that
o — e~ 3 d6.

e Note that 1

R(¢) =5 =Al9) - (1.49)

As we will see next week, this relation is not a conicidence.

e Moreover, the above scaling symmetry is part of a larger group of symmetries: the
superconformal group. We will discuss aspects of the above R symmetry (called the

superconformal R-symmetry) next week. We will also discuss breaking of this symmetry.
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