
1. Lecture 7:

• In our last lecture, we learned that the Witten index of the theory defined by

L =

∫
dθdθ∗

(
−1

2
gIJ(Φ)DΦID†ΦJ

)
(1.1)

is equal to the Euler characteristic of the target space manifold M (where, recall that

ΦI : t→M), i.e.

χ(M) =
∑
p

(−1)pdim(Hp) = IW . (1.2)

• We then learned about Berry’s phase and showed that

γn(t) =

∮
C
i〈na(ri(t))|∂rina(ri(t))dri = i

∫
S

(
~∇× 〈n(ri(t))|~∇n(ri(t))〉

)
· d~S

=

∫
S

(∑
m6=n

〈n|~∇H|m〉 × 〈m|~∇H|n〉
(En − Em)2

)
· d~S . (1.3)

• For the case of a spin in a magnetic field, H = ~B · ~σ, you showed on the homework that

γn(t) =

∫
S

~B

2B3
· d~S = 2π . (1.4)

This is the field for a magnetic monopole.

• We then moved on to N = (2, 2) SUSY, which will teach us more about Berry’s phase /

background fields and will connect to the higher dimensional theories we will study more

directly.

• The relevant algebra is (again neglecting central terms, as we did in the N = 2 case)

{Qα, Qβ} = {Q̄α, Q̄β} = 0 , {Qα, Q̄β} = −2Hεαβ . (1.5)

where α, β = ± are fundamental labels of an SU(2) group called SU(2)R (i.e., Q and Q̄

transform separately as doublets—or 2’s—of SU(2)R) We also have

εαβ =

(
0 1

−1 0

)
, εαβ =

(
0 −1

1 0

)
, σ1

αβ =

(
i 0

0 i

)
, σ2

αβ =

(
1 0

0 −1

)
,

σ3
αβ =

(
0 1

1 0

)
. (1.6)
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Here εαβ and εαβ are SU(2)R-invariant tensors that are used to raise and lower spin 1/2

indices (Exercise: prove these tensors are invariant).

• The automorphism group is now SU(2)R×U(1)R instead of U(1)R as before. The quantum

numbers of the objects appearing above are

H ∼ 00 , Qα ∼ 2−1 , Q̄α ∼ 2+1 , (1.7)

where the bold letters are the SU(2)R representations (or dimensions) and the subscripts

are the U(1)R charges.... The corresponding Grassmann coordinates are (e.g., see [1])

θα , θ̄α ≡ (θα)∗ . (1.8)

We have

θα = εαβθ
β , θα = εαβθβ ,

θ̄α = εβαθ̄
β , θ̄α = εβαθ̄β . (1.9)

As you showed on the HW, these coordinates satisfy

θαθβ =
1

2
εαβθ

2 , θ̄αθ̄β =
1

2
εαβ θ̄

2 ,

θαθβ = −1

2
εαβθ2 , θ̄αθ̄β = −1

2
εαβ θ̄2 , (1.10)

where we define

θ2 ≡ θαθα = εαβθβθα , θ̄2 ≡ θ̄αθ̄
α = εαβ θ̄β θ̄α , θθ̄ = θαθ̄

α = θαθ̄α . (1.11)

In particular, we are using the SU(2)R-invariant εαβ tensor to raise indices and the SU(2)R-

invariant (inverse) εαβ tensor to lower indices (but we should be careful when we use this

tensor since we use it and its transpose to act spinors and their conjugates respectively)...

• We define

(ηαξβ)∗ = ξ̄β η̄α , (1.12)

and so Exercise: Prove that (1.12) implies

∂∗θα = −∂θ̄α , ∂∗θα = −∂θ̄α . (1.13)

Also check that

εαβ∂θβ = −∂θα , εβα∂θ̄β = −∂θ̄α , (1.14)
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and

(σaσb)αβ = σaαγε
γδσbδβ = δabεαβ + iεabcσcαβ , (σaαβ)∗ = εαγεδβσaγδ ≡ σaαβ , Tr(σaσb) = 2δab .

(1.15)

• The resulting SUSY covariant derivatives are (these are consistent with (1.13) and (1.14))

Dα = ∂θα − iθ̄α∂t , D̄α = ∂θ̄α − iθα∂t ,
Qα = ∂θα + iθ̄α∂t , Q̄α = ∂θ̄α + iθα∂t . (1.16)

They satisfy the algebra

{Dα, D̄β} = 2iεαβ∂t , {Qα, Q̄β} = −2iεαβ∂t , (1.17)

with all other anti-commutators vanishing, i.e., {Dα,Dβ} = {D̄α, D̄β} = {Dα,Qβ} =

{D̄α,Qβ} = {D̄α, Q̄β} = {Dα, Q̄β} = {Qα,Qβ} =
{
Q̄α, Q̄β

}
= 0.

Exercise: Prove (1.17).

• To understand the Dirac monopole Berry’s phase in the context of N = 2(2, 2) SUSY, we

should introduce gauge multiplets: the SUSY completion of gauge fields. Let’s consider a

U(1) gauged quantum mechanics with some number of chiral multiplet matter fields.

• There are three important representations we will need. The first is the chiral multiplet

(which is the generalization of the chiral multiplet we studied in the N = 2 QM case),

which is a function of y = t− iθαθ̄α (note that D̄αy = D̄αθ = 0)...

Φ = φ(y) +
√

2θαψα(y) + θ2F (y)

= φ− iθαθ̄αφ′ +
1

4
θ2θ̄2φ′′ +

√
2θψ − i√

2
θ2θ̄αψ

′α + θ2F . (1.18)

It clearly satisfies D̄αΦ = 0. Using the Liebnitz rule, we see that D̄α(Φ1Φ2) = 0 if the Φi

are chiral. Similarly, D̄α(Φ1 + Φ2) = 0. Therefore, the primaries again form an object called

the “chiral ring.” They satisfy [Q̄α, φ] = 0. Note that we can also prove that the Φi form a

ring by multiplying Φ1 and Φ2 together and using the θ expansion:

Φ1Φ2 = (φ1(y) +
√

2θαψ1α(y) + θ2F1(y))(φ2(y) +
√

2θαψ2α(y) + θ2F2(y))

= φ1φ2 +
√

2θα(φ1ψ2 + φ2ψ1) + θ2 (φ1F2 + φ2F1 − ψ1ψ2) . (1.19)

• We also have the anti-chiral field (which is a function of ȳ = t + iθαθ̄α such that

Dαȳ = Dαθ̄ = 0)

Φ̄ = φ̄(ȳ)−
√

2θ̄αψ̄
α(ȳ)− θ̄2F̄ (ȳ)
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= φ̄+ iθαθ̄αφ̄
′ +

1

4
θ2θ̄2φ̄′′ −

√
2θ̄ψ̄ +

i√
2
θ̄2θαψ̄

′α − θ̄2F̄ . (1.20)

Note that

D̄ασaαβD
βΦ = D̄ασaαβD

βΦ̄ = 0 , (1.21)

This fact will be crucial when discussing “field strength” superfields (although note that

the vector itself is non-propagating).

• The second important multiplet is the (abelian) vector multiplet

V = −θθ̄A0 − θ̄σaθxa + iθ2 · θ̄λ̄− iθ̄2θλ+
1

4
θ2θ̄2D , (1.22)

where, as we will see in more detail later, supersymmetric gauge transformations allow us

to remove the lower-order terms.... This is because under gauge transformations

V → V +
i

2
(Λ− Λ̄) , (1.23)

where Λ is a chiral superfield. The remaining fields besides the gauge fields are singlets:

they transform in the adjoint of U(1)...

• Finally, we can use the vector to build a (real) linear multiplet (a generalization of the

real multiplet we studied in the N = 2 QM case)... In higher dimensions, it will include

the gauge field strength...

Σa =
1

2
D̄ασaαβD

βV = −xa + iθσaλ̄+ iθ̄σaλ− θ̄σaθD + εabcθ̄σ
bθx′c +

1

2
θ̄2 · θσaλ′

− 1

2
θ2 · θ̄σaλ̄′ + 1

4
θ2θ̄2x′′a , (1.24)

where this multiplet satisfies (note that θ̄σaλ̄′ = θ̄ασ
aα
βλ̄
′β and θσaλ′ = θασaβα λ

′
β)

D2Σa = D̄2Σa = 0 . (1.25)

The second equality is trivial, and the first follows from the SUSY algebra...

• Finally, note that (1.21) implies that Σa is invariant under the gauge transformation

described in (1.23) (this is what we expect since the adjoint representation of U(1) is the

singlet)...

Exercise: Check that (1.22), (1.24), and (1.20) form representations of the SUSY algebra

in (1.17). Also, prove (1.25) and (1.21).
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• We now want to construct SUSY-invariant interactions... As in the N = 2 case, we can

compute SUSY variations as follows

δχ = [ηαQα + η̄αQ̄α, χ] = ηα
(
∂θα + iθ̄α∂t

)
χ+ η̄α (∂θ̄αχ+ iθα∂t)χ , (1.26)

for any superfield, χ. Note that the highest possible component in any superfield is θ2θ̄2.

We can only get such terms from the ∂t parts of the supercharges.... Therefore, the top

component will transform as a total derivative under SUSY.... So (note, d4θ = dθ2dθ̄2 =

dθαdθαdθ̄α̇dθ̄
α̇) ∫

d4θχ , (1.27)

is SUSY invariant.

• As a result, we have the following SUSY invariant Lagrangian (note, d4θ = dθ2dθ̄2 =

dθαdθαdθ̄α̇dθ̄
α̇) for the abelian vector multiplet kinetic terms

Lvec =
1

3g2

∫
d4θΣaΣa =

1

3g2

(
−1

2
xax′′a + x′ax′a +

3i

2
λ̄λ′ − 3i

2
λ̄′λ+

3

2
D2

)
=

1

g2

(
1

2
x′ax′a + iλ̄λ′ +

1

2
D2

)
, (1.28)

where g−2 is, in non-relativistic quantum mechanics, a mass term moving in the xa direction,

but, in accordance with conventions we will see in higher dimensions, can also be thought

of as a gauge coupling. Note that we can also add

LFI = ζ

∫
dθ̄σadθΣa = −ζD . (1.29)

This is gauge and SUSY invariant... It is called an “FI” term...

• We have the following SUSY-invariant chiral multiplet kinetic terms (with couplings to

the vector multiplet)

Lchiral = −
∫
d2θd2θ̄Φ̄e2qV Φ = |Dtφ|2 +

i

2
ψDtψ̄ −

i

2
Dtψψ̄ + |F |2 − q2xaxa|φ|2

+ qxaψσ
aψ̄ −

√
2qiφ̄λψ −

√
2qiφλ̄ψ̄ − q

2
D|φ|2 . (1.30)

where

Dtφ = (∂t − iqA0)φ , Dtφ̄ = (∂t + iqA0)φ̄ ,

Dtψα = (∂t − iqA0)ψα , Dtψ̄α = (∂t + iqA0)ψ̄α , (1.31)
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Note that the terms linear in A0 couple to a current for the U(1)F symmetry under which

Φ→ Φe−iqΛ , (1.32)

for constant Λ ∈ R.... The gauge field, A0, is around to maintain gauge invariance when we

promote Λ to a function of t... In fact, can promote Λ to a chiral superfield and allow for

supergauge transformations by requiring (1.23)...

• We are now ready to discuss Berry’s phase in SQM.

• As you proved in your homework the curvature of the Berry connection we get from a

spin-1/2 particle in a magnetic field with

H = ~B · ~σ , (1.33)

has curvature

~V = ~∇× ~A =
~B

2B3
. (1.34)

where this is computed in the | ↑〉 state.

• In the context of SUSY QM, the Berry connection is a gauge connection over the space of

parameters. As we will see, these can be thought of as background fields living in different

supermultiplets: these are fields whose values have fixed and are not fluctuating (we will

sometimes refer to these parameters / fields as spurions since we will often allow them to

transform under corresponding broken (or “spurious”) symmetries in order to get selection

rules).

• Let us now focus on the case of a single free chiral multiplet, Φ. We will turn off gauge

interactions. The reason we do this is intuitively clear: in (1.33) ~B is a background field (it

is a set of classical parameters that an experimenter can tune—it is not quantum mechanical

on its own, unlike the spin-1/2 matter).

• To understand this statement, let us note that the only terms we can turn on and still

have a free theory are mass terms. None-the-less, we will see that certain mass terms act

as “background” gauge fields!

• But our goal is to make contact with the spin half example in the intro... We needed

three parameters there (three magnetic field components)... In the case of a free chiral,

we also have a real (as opposed to holomorphic—see below for what this latter mass term
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looks like) mass.... It is a triplet of SU(2)R, so it has 3 components... Also, it enters the

Lagrangian like a vector multiplet...

• Indeed, we can think of a real mass parameter living in a background linear multiplet as

in (1.24) that weakly gauges a U(1)F flavor symmetry... In particular, consider a triplet of

mass parameters, ma (setting them non-zero breaks SU(2)R ×U(1)R → U(1)′R ×U(1)R, but

we can imagine allowing them to transform in order to get selection rules). We have

Lmass = −
∫
d4θΦ̄e−2θ̄σaθmaΦ = |φ′|2 + iψψ̄′ −mama|φ|2 +maψσaψ̄ , (1.35)

where ma plays the role of the xa SU(2)R triplet (note that we have solved the EOM of F

and set F = 0)... Compare to (1.30). Essentially, we have fixed xa = ma and set the other

fields in the multiplet to zero.

• Performing the usual transformation back to the Hamiltonian formulation gives us

H = |π|2 +mama|φ|2 + ψ̄maσaψ , (1.36)

where

[φ, π] = i , π = −i∂φ , {ψα, ψ̄β} = δβα . (1.37)

The Fermionic operators can be arranged in creation and annihilation operators and yield

the space

|0〉 , ψ̄+|0〉 , ψ̄−|0〉 , ψ̄+ψ̄−|0〉 , (1.38)

where

ψ±|0〉 = 0 . (1.39)

On the space {|0〉, ψ̄+ψ̄−|0〉}, Hψ = ψ̄maσaψ vanishes (Exercise: check this). However, on

the {ψ̄−|0〉, ψ̄+|0〉} subspace we have

Hψψ̄α|0〉 = maσ β
aαψ̄β|0〉 . (1.40)

• This is just the Hamiltonian we encountered for a spin in a magnetic field on the HW.

Therefore, we have that (depending on the state in question)

~V = ± ~m

2m3
(1.41)

This also dovetails nicely with our discussion of fermion bilinears as corresponding to spin

half particles in a magnetic field from the beginning of the course.... If you’d like to see
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more details on the above, have a look at the original paper [2] (although some of the

conventions are different).

• Before continuing to QFT, there is one more thing I’d like to cover. Since we have chiral

superfields, much as in the N = 2 case, we can consider holomorphic and anti-holomorphic

SUSY invaraints ∫
d2θW (Φ) + h.c. . (1.42)

From definition of superfield variation

δχ = [ηαQα + η̄αQ̄α, χ] = ηα
(
∂θα + iθ̄α∂t

)
χ+ η̄α (∂θ̄αχ+ iθα∂t)χ , (1.43)

and the expansion in (1.20), we see that [ηαQα, F ] = 0. Moreover, [η̄αQ̄α, F ] ∼ η̄αψ′α. This

is called the superpotential (note that it is holomorphic).

• Therefore, we can also consider holomorphic mass terms.

W = µΦ2 , (1.44)

we can think of it as constituting a background chiral multiplet (a chiral multiplet with

some fixed field value).

• The general Lagrangian then looks like

L = −
∫
d4θϕ†e−2θ̄σaθmaϕ+

∫
d2θµϕ2 −

∫
d2θ̄µ̄ϕ2

= |φ′|2 + iψψ′† −m2|φ|2 +maψσaψ
† − 4|µ|2|φ|2 + µψ2 − µ̄ψ†2 , (1.45)

where m =
√
mama.

• On the homework, you will analyze the case m = 0, µ 6= 0. We have already analyzed

µ = 0, m 6= 0. Also, you will study the case m,µ 6= 0. Somewhat surprisingly, this latter

case turns out not to have a SUSY vacuum! You will show this explicitly by constructing

the Hamiltonian and checking there are no SUSY groundstates (you should do this by

looking at the groundstates of the bosonic and fermionic Hamiltonians and summing up

the resulting energies).

• However, there is a more conceptual proof: thinking of µ and ma as comprising background

fields yields a term in the bosonic potential of the form

V ⊃ 4m2|µ|2 > 0 , (1.46)
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where the factor of four is due to the charge of µ needed to make µΦ2 invariant under

the corresponding U(1) (here we say that µ is a spurion for the symmetry under which

Φ rotates by a phase). We will see that this statement is related to a discussion we will

have in higher dimensions once we understand the Higgs mechanism: it will be related to a

statement about the absence of certain types of “mixed branch” vacua. We will get to this

soon—after discussing the (SUSY) Higgs mechanism.

• We have been working in 0+1 dimensions so far. Now, let’s move up to 2+1 dimensions (I

will just call it 3D... we will occasionally go between Lorentzian and Euclidean signatures...

Have SO(2, 1) and SO(3)... Anti-symm matrices in SO(3) case XTX = 1 and expand

X = eε
aTa ... In Lorentzian case, get factor of ηµν instead in the definition). Note that

momentum must appear because Lorentz transformations relate H to P .

• For the rest of the module we will mostly be concerned with the 3D N = 2 algebra

{Qα, Q̄β} = 2γµαβPµ , γµαβ = γµβα , µ = 1, 2, 3 , (1.47)

Comment: This algebra looks quite similar to the N = (2, 2) SQM algebra, and we

will see why, but note there are also a few differences: here α, β are spacetime spinor

indices (as opposed to internal R-symmetry indices; note that in both cases, the symmetries

in question do not commute with the supercharges)... Also, there is no longer just the

Hamiltonian sitting on the RHS of (1.47). Instead, special relativity in 3D forces us to

include momentum generators in the spatial directions as well. Also, note that the gamma

matrices are symmetric, i.e., we have spin 1 or vector generators.

• There is now a U(1)R automorphism (SU(2)R is no longer present, it is replaced by a

spacetime symmetry)... We will come back again and again to the important role played by

U(1)R in the coming lectures.

• An aside on spinors: spinors are in the double cover of the space-time symmetry group. If

we are in Euclidean space, then this is the double cover of SO(3), i.e., SU(2) = Spin(3). If we

are in Lorentzian space, then this is the double cover of SO(2, 1), i.e., SL(2,R) = Spin(2, 1).

We will spend much of the remainder of this module in Lorentzian signature and take

γµαβ =
(
σ0, σ1, σ3

)
. (1.48)

where

σ0
αβ = −

(
1 0

0 1

)
, σ1

αβ =

(
0 1

1 0

)
, σ3

αβ =

(
1 0

0 −1

)
. (1.49)

9



The following generators generate SL(2, R)

εβγσ0
αγ = σ0β

α =

(
0 1

−1 0

)
, εβγσ1

αγ = σ1β
α =

(
1 0

0 −1

)
, εβγσ3

αγ = σ3β
α =

(
0 −1

−1 0

)
. (1.50)

Note that

(γµ)βα(γν)λβ = ηµνδλα + εµνρ(γρ)
λ
α . (1.51)

The main difference is that SO(2, 1) has real 2-component spinors while SU(2) does not...

The supercharges form a complex 2 component spinor anyway, so can use either space-time

symmetry group. See Polchinski volume II for a discussion of spinors in various dimensions...

• Both this 3D N = 2 algebra and the N = (2, 2) SQM algebra can be obtained via

dimensional reduction of the 4D N = 1 SUSY algebra.

• What is dimensional reduction? It is a process to start from some quantum system

in d space-time dimensions and reduce it to a quantum system in d − r < d space-time

dimensions.

• Suppose these r dimensions form some compact manifold, Mr (e.g., Mr = T r = S1 ×
· · · × S1). Suppose Mr has some characteristic length-scale, L (this could be the period of

the circles in the T r). Then, quantum mechanics tells us that p = ni/L for ni ∈ Z (and

i = 1, · · · , r). As we take L→ 0, p→∞ and so too the energy... Therefore, in this limit,

the only finite energy configurations are those that are independent of the extra dimensions...

These have ni = 0... Specializing to these modes that have no dependence on Mr, we get

the dimensional reduction. This is equivalent to setting momentum to zero in the internal

dimensions....

• Note that symmetries like rotations of these internal dimensions become internal symme-

tries of the dimensionally reduced theory (will see this below).

• Let us return to 4D→3D SUSY. There are unfortunately many conventions at play here...

To get to 3d N = 2, we start in 4D from the Wess and Bagger conventions

{Qα, Q̄α̇} = 2σµαα̇Pµ , (1.52)

σ0
αβ̇

= −

(
1 0

0 1

)
, σ1

αβ̇
=

(
0 1

1 0

)
, σ2

αβ̇
=

(
0 −i
i 0

)
,

σ3
αβ̇

=

(
1 0

0 −1

)
. (1.53)
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we have here both “dotted” (e.g., “α̇”) and “undotted” (e.g., “α”) spinor indices here. This

is because Spin(3, 1) = SL(2,C), so twice as many types of spinor reps. Similarly, for the

Euclidean case, Spin(4) = SU(2)× SU(2), so there are twice as many types of spinor reps.

• Let us now reduce by, say, setting to zero momentum in the x2 direction of R4 → R3×S1

(where x2 parameterizes the S1). This means, we set P2 = 0 and obtain the algebra we had

for 3D N = 2 (we drop the dotted index because in 3D there is no distinction between

dotted and undotted).

• To get to our N = (2, 2) SQM, we would start from a slightly different convention for

our σµαα̇, e.g.,

σ0
αα̇ =

(
0 −1

1 0

)
, σ1

αα̇ =

(
i 0

0 i

)
, σ2

αα̇ =

(
1 0

0 −1

)
, σ3

αα̇ =

(
0 1

1 0

)
. (1.54)

We would then set P 3 = P 2 = P 1 = 0. The spin group of the transverse 3D become

generators of the SU(2)R symmetry of the quantum mechanics...

• Back to QFT: roughly, we should treat free quantum fields as operator valued functions

of space obeying equal time commutation relations (in the Heisenberg picture)

[ϕa(xi, t), ϕb(yi, t)] = [πa(xi, t), π
b(yi, t)] = 0 , [πb(xi, t), φa(yi, t)] = −iδ(2)(xi − yi)δba .

(1.55)

• Since we are studying objects that depend on both space and time, we should modify

our superspace differential operators. They become

Qα = ∂θα + iγµβα θ̄β∂µ , Q̄α = −∂θ̄α − iγµβα θβ∂µ . (1.56)

where we raise and lower with εαβ and εαβ as follows

εαβθβ = θα , εαβ θ̄β = θ̄α , εαβθ
β = θα , εαβ θ̄

β = θ̄α . (1.57)

The SUSY covariant derivatives are now

Dα = ∂θα − iγµβα θ̄β∂µ , D̄α = −∂θ̄α + iγµβα θβ∂µ . (1.58)

These quantities satisfy

{Dα, D̄β} = −2iγµαβ∂µ , {Qα, Q̄β} = 2iγµαβ∂µ . (1.59)
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Other useful identities include (Exercise!)

DαD̄α = D̄αDα , {Dα,Dβ} = · · · = 0 . (1.60)

We also have the SUSY integration definitions∫
d2θθ2 = 1 ,

∫
d2θ̄θ̄2 = −1 ,

∫
d4θθ2θ̄2 = −1 . (1.61)

• What are some representations of the 3D N = 2 SUSY algebra? Well, we again have our

friend the chiral multiplet, which is a function of θα and yµ = xµ − iθγµθ̄

Φ = φ(y) +
√

2θψ(y) + θ2F (y) = φ(x)− iθγµθ̄∂µφ(x)− 1

4
θ2θ̄2∂2φ(x) +

√
2θψ(x)

+
i√
2
θ2∂µψ(x)γµθ̄ + θ2F (x) . (1.62)

Similarly, we have an anti-chiral multiplet

Φ̄ = φ̄(y)−
√

2θ̄ψ̄(y)− θ̄2F̄ (y) = φ̄(x) + iθγµθ̄∂µφ̄(x)− 1

4
θ2θ̄2∂2φ̄(x)−

√
2θ̄ψ̄(x)

− i√
2
θ̄2θγµ∂µψ̄(x) + θ̄2F̄ (x) . (1.63)

Note that these multiplets satisfy 0 = DαD̄αΦ = D̄αDαΦ, and similarly for Φ̄.

• Next week we will continue with our exploration of 3D N = 2.
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