
1. Lecture 6: N = (2, 2) QM and Berry Phase

• In our last lecture, we learned how to write the 1D particle in superspace

L =

∫
dθdθ∗

(
−1

2
DΦD†Φ +W (Φ)

)
. (1.1)

In this lecture, we will generalize this discussion in a way that makes the connection between

the Witten Index and topological quantities clearer.

• To get to this point, let us first recall that we showed there is a one-to-one correspondence

SUSYgd.states↔ ker(Q†)/Im(Q†) , (1.2)

where ker(Q†) is made up of Q†-closed SUSY states (i.e., those annihilated by Q†). States

that are Q† of something else are in Im(Q†) ⊂ Ker(Q†). The “/” means that we work

modulo terms in Im(Q†) (i.e., if two states in ker(Q†) differ by such terms, we identify these

two states). Since Q†2 = 0, this defines some notion of cohomology....

• Comment 1: Replace Q† → d (where d : Ωr(M) → Ωr+1(M)), and you will have the

cohomology you were studying last semester in the Differential Geometry module (that

cohomology was called de Rham cohomology... we call the closed r forms modulo the

exact ones the “rth de Rham cohomology group”, Hr(M)). This is the same idea in a

different guise... In fact, we will see precisely that Q† → d in some interesting examples in

a moment... Here M is a “manifold.” This is a space that locally looks like RN (if it is

N -dimensional), but globally has some more non-trivial structure (that you patch together

via transition functions, e.g., as in the case of a sphere). Don’t worry too much about

technical details of what a manifold is.

• Comment 2: The Euler characteristic is a useful topological invariant of M. It is defined

as

χ =
∑

(−1)pbp =
∑

(−1)pdim(Hr) . (1.3)

Should remind you a bit of the Witten index... This is no accident. Now, it is useful (for

visualization purposes) to note that χ is related to the alternating sum of dimensions of

homology groups by de Rham’s theorem.

• Roughly speaking, the pth homology group, Hp, is the set of p-dimensional cycles modulo

boundaries. Here a cycle, C ⊂ M is a closed submanifold (i.e., C is compact without

boundary, i.e., ∂C = 0). Boundaries here are cycles that are themselves boundaries of
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another submanifold. There is then a natural pairing between elements of Hp and Hp via

integration. Give homework example and circle, which has χ = 0 (related to I...

not an accident). Give torus example (χ = 0).

• More generally for a 2D surface, χ = 2− 2g, where g is the genus (a.k.a., the number of

handles). Momentarily, we will relate it to IW . Same will hold in higher dimensions.

• Before continuing, let us also clear something up from HW2: when φ is compact, we

don’t need to care about φ→ ±∞.... Can still have more normalizable solutions than in

the non-compact case (since fields don’t die off)... Just need to check that wavefunctions

obey boundary conditions...

• Example (the “nlσm”1): Let us use this discussion on a more sophisticated example,

consider

S =

∫
dtdθdθ∗

(
− 1

2
gIJ(Φ)DΦID†ΦJ

)
(1.4)

Where I, J = 1, · · ·N , ΦI : t→M , and M is an N -dimensional compact manifold (again,

don’t worry about the precise definition of this here: it is a space that locally looks like

RN but that has to be “smoothly pieced together” as in the example, say, of a sphere)...

• Here gIJ is a metric on M (it is Riemannian in order for energies to be bounded from

below), and the derivatives are the SUSY covariant derivatives we introduced above...

• We will also assume M is compact (as in the case of a finite radius sphere; a sufficient

condition for this is that every Cauchy sequence of points—i.e., every sequence of points

where distances between points go to zero— in M converges in M and that the diameter

of the manifold—i.e., the supremum of geodesic distances— is finite).

• Expanding out in components, we find

L =
1

2
gIJφ

′Iφ′J +
i

2
gIJψ

∗I D

Dt
ψJ +

1

8
RIJKLψ

∗IψJψ∗KψL , (1.5)

where RIJKL is the Riemann tensor of M , and, if we interpret ψ∗I ∼ dφI ∈ Ω1(M) as a

1-form (with ψI as a tangent vector) then D/Dt is the usual covariant derivative.

Exercise: Check the above statement (note that the first term should not involve derivatives

of the metric by what we have said above, while the second term involves both zero and

1This strange terminology dates to ur-QCD physics and the fact that this model is similar in nature to a

model for a particular resonance Murray Gell-Mann was studying: the σ.
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one derivative terms since it is the usual covariant derivative... the last term must involve

two derivatives of the metric, which is consistent with the fact that the Riemann tensor

has two derivatives...)

• The supercharges generalize what we wrote before (for zero superpotential)2

Q = i
∑
I

ψIπI , Q† = −i
∑
I

ψ∗IπI , πI = −i D
DφI

, H = ∆ (1.7)

where the second to last expression is the covariant derivative on M and H is the Laplacian....

• Now, let’s build the quantum states of this theory. We start from the anti-commutation

relations (Clifford algebra)

{ψ∗I , ψJ} = gIJ . (1.8)

So the theory is built on the state |Ω〉 that is annihilated by all ψI . Acting with raising

operators gives us

FI1,···Ip(φ)ψ∗I1 · · ·ψ∗Ip |Ω〉 . (1.9)

These clearly correspond to p-forms, and, in this case

Q† = d : Ωp → Ωp+1 . (1.10)

Moreover,

Q = d∗ ≡ ∗d∗ : Ωp → Ωp−1 , (1.11)

where ∗ is the Hodge star.3

Exercise Check the above discussion.

• Then,

2H = dd∗ + d∗d = 2∆ , (1.12)

where ∆ is the Laplacian on M . As we saw above, SUSY groundstates in one to one

correspondence with kerQ†/ImQ†. On the other hand, using our identification Q† = d, we

see the number of SUSY groundstates with fermion number p (assuming |Ω〉 has fermion

2Recall that

Q =
1√
~
ψ(W ′ + iπ) , Q† =

1√
~
ψ†(W ′ − iπ) , H =

1

2
(π2 +W ′2 − [ψ†, ψ]W ′′) (1.6)

3Taking ω = 1
r!ωµ1···µrdψ

∗µ1 · · · dψ∗µr , we have ∗ω =

√
det(g)

r!(N−r)!ωµ1···µrε
µ1···µr

νr+1···νNdψ
∗νr+1 · · · dψ∗νN ...
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number zero) is just given by bp = dimHp(M) since the states in (1.9) are closed p forms...

The Witten index is then the Euler character

Tr(−1)F =
∑
p

(−1)pbp = χ . (1.13)

In the case of the theory on the circle, we see: I = 1− 1 = 0

• Now I want to change topics and discuss SQM with more SUSY... This will lead us to an

interesting discussion of Berry’s phase / Geometrical phase in SQM (applications of this to

SUSY QFT in higher dimensions remain an area of research). We will learn some advanced

concepts that usually appear in QFT courses but here in QM.

• The basic idea behind Berry’s phase is to take a quantum system with some parameters

ri ∈M. Let the corresponding Hamiltonian have a spectrum with quantum numbers na,

|na(ri(t))〉. One then varies the parameters adiabatically (i.e., slowly) and (for our purposes)

assumes no level crossing. Then, under such evolution, the eigenstates are expected to

remain eigenstates and can be followed along the corresponding path (i.e., we start in a

particular eigenstate and stay in that eigenstate). When we come back to the state we

started from along a closed loop, C, then the original state comes back to itself up to a

phase that depends only on the geometry of M and the topology of C (this phase can be

non-abelian).

• Ansatz

|Ψ(t, ri)〉 = exp (iγn(t)) exp

(
− i
~

∫ t

0

En(ri(t))

)
|na(ri(t))〉 . (1.14)

Plugging into the Schrödinger equation

H(ri(t))|Ψ(t, ri)〉 = i~∂t|na(ri(t))〉 , (1.15)

and sandwiching with 〈na(ri(t))| yields

d

dt
γn(t) = i〈na(ri(t))|∂rina(ri(t))〉

dri
dt

, (1.16)

and so

γn(t) =

∮
C
i〈na(ri(t))|∂rina(ri(t))dri . (1.17)

Also can have non-abelian generalization.

• Comment: Note that Stoke’s theorem is useful here... Indeed,

γn(t) =

∮
C
i〈na(ri(t))|∂rina(ri(t))dri = i

∫
S

(
~∇× 〈n(ri(t))|~∇n(ri(t))〉

)
· d~S . (1.18)
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RHS is clearly gauge invariant... However, non-trivial sometimes to evaluate RHS... So,

defining ~V ≡ i~∇× 〈n|~∇n〉, we have

~V = i〈~∇n| × |~∇n〉 = i
∑
m

〈~∇n|m〉 × 〈m|~∇n〉 (1.19)

These latter quantities can be related to matrix elements of ~∇H. To see this, note that

~∇〈m|H|n〉 = En~∇〈m|n〉 = 0 = 〈~∇m|H|n〉+ 〈m|~∇H|n〉+ 〈m|H|~∇n〉 (1.20)

Note also that orthonormalization of the basis implies

~∇〈m|n〉 = ~∇δmn = 0 = 〈~∇m|n〉+ 〈m|~∇n〉 . (1.21)

Plugging this into the previous equation yields

0 = (En − Em)〈~∇m|n〉+ 〈m|∇H|n〉 . (1.22)

Note, by (1.21), we have that the term in (1.19) with m = n vanishes since it is the cross

product of a vector with itself. Therefore, we obtain

~V =
∑
m 6=n

〈n|~∇H|m〉 × 〈m|~∇H|n〉
(En − Em)2

, (1.23)

with γ the corresponding surface integral.

Exercise: Spin 1/2 particle in magnetic field, ~B ∈ R3 has H = ~B · ~σ... Here the ~B is the

set of parameters, i.e., Bi = ri for i = 1, 2, 3. So, we have ~∇H = ~σ. Then, given above,

check that

~∇× ~A =
~B

2B3
. (1.24)

This is the connection of a Dirac monopole... We will find a SUSY construction of this

monopole soon... It will illustrate an important idea in SUSY: background fields.

• We now move to N = (2, 2) SUSY. It is more complicated than the N = 2 algebra we

considered before... Two reasons we want to study this algebra: it will allow us to get an

interesting SUSY version of Berry’s phase AND will connect directly to the 2+1D discussion

we will have soon via dimensional reduction. The algebra is (again neglecting central terms,

as we did in the N = 2 case)

{Qα, Qβ} = {Q̄α, Q̄β} = 0 , {Qα, Q̄β} = −2Hεαβ . (1.25)
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where α, β = ± are fundamental labels of an SU(2) group called SU(2)R (i.e., Q and Q̄

transform separately as doublets—or 2’s—of SU(2)R) σaαβ are the generators of this SU(2)R

and transform as a triplet (or 3 of SU(2)R—the index a = 1, 2, 3 is a triplet index... We

are summing over raised and lowered indices... We raise and lower a with δab and δab

respectively)... We also have

εαβ =

(
0 1

−1 0

)
, εαβ =

(
0 −1

1 0

)
, σ1

αβ =

(
i 0

0 i

)
, σ2

αβ =

(
1 0

0 −1

)
,

σ3
αβ =

(
0 1

1 0

)
. (1.26)

Here εαβ and εαβ are SU(2)R-invariant tensors that are used to raise and lower spin 1/2

indices (Exercise: prove these tensors are invariant).

The automorphism group is now

SU(2)R × U(1)R (1.27)

instead of U(1)R as before. The quantum numbers of the objects appearing above are

H ∼ 00 , Qα ∼ 2−1 , Q̄α ∼ 2+1 , (1.28)

where the bold letters are the SU(2)R representations (or dimensions) and the subscripts

are the U(1)R charges.... The corresponding Grassmann coordinates are (e.g., see [1])

θα , θ̄α ≡ (θα)∗ . (1.29)

We have

θα = εαβθ
β , θα = εαβθβ ,

θ̄α = εβαθ̄
β , θ̄α = εβαθ̄β . (1.30)

These coordinates satisfy (Exercise)

θαθβ =
1

2
εαβθ

2 , θ̄αθ̄β =
1

2
εαβ θ̄

2 ,

θαθβ = −1

2
εαβθ2 , θ̄αθ̄β = −1

2
εαβ θ̄2 , (1.31)

where we define

θ2 ≡ θαθα = εαβθβθα , θ̄2 ≡ θ̄αθ̄
α = εαβ θ̄β θ̄α , θθ̄ = θαθ̄

α = θαθ̄α . (1.32)
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In particular, we are using the SU(2)R-invariant εαβ tensor to raise indices and the SU(2)R-

invariant (inverse) εαβ tensor to lower indices (but we should be careful when we use this

tensor since we use it and its transpose to act spinors and their conjugates respectively)...

• We define

(ηαξβ)∗ = ξ̄β η̄α , (1.33)

and so Exercise: Prove that (1.33) implies

∂∗θα = −∂θ̄α , ∂∗θα = −∂θ̄α . (1.34)

Also check that

εαβ∂θβ = −∂θα , εβα∂θ̄β = −∂θ̄α , (1.35)

and

(σaσb)αβ = σaαγε
γδσbδβ = δabεαβ + iεabcσcαβ , (σaαβ)∗ = εαγεδβσaγδ ≡ σaαβ , Tr(σaσb) = 2δab .

(1.36)

• The resulting SUSY covariant derivatives are (these are consistent with (1.34) and (1.35))

Dα = ∂θα − iθ̄α∂t , D̄α = ∂θ̄α − iθα∂t ,
Qα = ∂θα + iθ̄α∂t , Q̄α = ∂θ̄α + iθα∂t . (1.37)

They satisfy the algebra

{Dα, D̄β} = 2iεαβ∂t , {Qα, Q̄β} = −2iεαβ∂t , (1.38)

with all other anti-commutators vanishing, i.e., {Dα,Dβ} = {D̄α, D̄β} = {Dα,Qβ} =

{D̄α,Qβ} = {D̄α, Q̄β} = {Dα, Q̄β} = {Qα,Qβ} =
{
Q̄α, Q̄β

}
= 0.

Exercise: Prove (1.38).

• To understand the Dirac monopole Berry’s phase in the context of N = 2(2, 2) SUSY, we

should introduce gauge multiplets: the SUSY completion of gauge fields. Let’s consider a

U(1) gauged quantum mechanics with some number of chiral multiplet matter fields.

• There are three important representations we will need. The first is the chiral multiplet

(which is the generalization of the chiral multiplet we studied in the N = 2 QM case),

which is a function of y = t− iθαθ̄α (note that D̄αy = D̄αθ = 0)...

Φ = φ(y) +
√

2θαψα(y) + θ2F (y)
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= φ− iθαθ̄αφ′ +
1

4
θ2θ̄2φ′′ +

√
2θψ − i√

2
θ2θ̄αψ

′α + θ2F . (1.39)

It clearly satisfies D̄αΦ = 0. Using the Liebnitz rule, we see that D̄α(Φ1Φ2) = 0 if the Φi

are chiral. Similarly, D̄α(Φ1 + Φ2) = 0. Therefore, the primaries again form an object called

the “chiral ring.” They satisfy [Q̄α, φ] = 0. Note that we can also prove that the Φi form a

ring by multiplying Φ1 and Φ2 together and using the θ expansion:

Φ1Φ2 = (φ1(y) +
√

2θαψ1α(y) + θ2F1(y))(φ2(y) +
√

2θαψ2α(y) + θ2F2(y))

= φ1φ2 +
√

2θα(φ1ψ2 + φ2ψ1) + θ2

(
φ1F2 + φ2F1 −

1

2
ψ1ψ2

)
. (1.40)

• We also have the anti-chiral field (which is a function of ȳ = t + iθαθ̄α such that

Dαȳ = Dαθ̄ = 0)

Φ̄ = φ̄(ȳ)−
√

2θ̄αψ̄
α(ȳ)− θ̄2F̄ (ȳ)

= φ̄+ iθαθ̄αφ̄
′ +

1

4
θ2θ̄2φ̄′′ −

√
2θ̄ψ̄ +

i√
2
θ̄2θαψ̄

′α − θ̄2F̄ . (1.41)

Note that

D̄ασaαβD
βΦ = D̄ασaαβD

βΦ̄ = 0 , (1.42)

This fact will be crucial when discussing “field strength” superfields (although note that

the vector itself is non-propagating).

• The second important multiplet is the (abelian) vector multiplet

V = −θθ̄A0 − θ̄σaθxa + iθ2 · θ̄λ̄− iθ̄2θλ+
1

4
θ2θ̄2D , (1.43)

where, as we will see in more detail later, supersymmetric gauge transformations allow us

to remove the lower-order terms.... This is because under gauge transformations

V → V +
i

2
(Λ− Λ̄) , (1.44)

where Λ is a chiral superfield. The remaining fields besides the gauge fields are singlets:

they transform in the adjoint of U(1)...

• Finally, we can use the vector to build a (real) linear multiplet (a generalization of the

real multiplet we studied in the N = 2 QM case)... In higher dimensions, it will include

the gauge field strength...

Σa =
1

2
D̄ασaαβD

βV = −xa + iθσaλ̄+ iθ̄σaλ− θ̄σaθD + εabcθ̄σ
bθx′c +

1

2
θ̄2 · θσaλ′
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− 1

2
θ2 · θ̄σaλ̄′ + 1

4
θ2θ̄2x′′a , (1.45)

where this multiplet satisfies (note that θ̄σaλ̄′ = θ̄ασ
aα
βλ̄
′β and θσaλ′ = θασaβα λ

′
β)

D2Σa = D̄2Σa = 0 . (1.46)

The second equality is trivial, and the first follows from the SUSY algebra...

• Finally, note that (1.42) implies that Σa is invariant under the gauge transformation

described in (1.44) (this is what we expect since the adjoint representation of U(1) is the

singlet)...

Exercise: Check that (1.43), (1.45), and (1.41) form representations of the SUSY algebra

in (1.38). Also, prove (1.46) and (1.42).

• We now want to construct SUSY-invariant interactions... As in the N = 2 case, we can

compute SUSY variations as follows

δχ = [ηαQα + η̄αQ̄α, χ] = ηα
(
∂θα + iθ̄α∂t

)
+ η̄α (∂θ̄αχ+ iθα∂t)χ , (1.47)

for any superfield, χ. Note that the highest possible component in any superfield is θ2θ̄2.

We can only get such terms from the ∂t parts of the supercharges.... Therefore, the top

component will transform as a total derivative under SUSY.... So (note, d4θ = dθ2dθ̄2 =

dθαdθαdθ̄α̇dθ̄
α̇) ∫

d4θχ , (1.48)

is SUSY invariant.

• As a result, we have the following SUSY invariant Lagrangian (note, d4θ = dθ2dθ̄2 =

dθαdθαdθ̄α̇dθ̄
α̇) for the abelian vector multiplet kinetic terms

Lvec =
1

3g2

∫
d4θΣaΣa =

1

3g2

(
−1

2
xax′′a + x′ax′a +

3i

2
λ̄λ′ − 3i

2
λ̄′λ+

3

2
D2

)
=

1

g2

(
1

2
x′ax′a + iλ̄λ′ +

1

2
D2

)
, (1.49)

where g−2 is, in non-relativistic quantum mechanics, a mass term moving in the xa direction,

but, in accordance with conventions we will see in higher dimensions, can also be thought

of as a gauge coupling. Note that we can also add

LFI = ζ

∫
dθ̄σadθΣa = −ζD . (1.50)
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This is gauge and SUSY invariant... It is called an “FI” term...

• We have the following SUSY-invariant chiral multiplet kinetic terms (with couplings to

the vector multiplet)

Lchiral = −
∫
d2θd2θ̄Φ̄e2qV Φ = |Dtφ|2 +

i

2
ψDtψ̄ −

i

2
Dtψψ̄ + |F |2 − q2xaxa|φ|2

+ qxaψσ
aψ̄ −

√
2qiφ̄λψ −

√
2qiφλ̄ψ̄ − q

2
D|φ|2 . (1.51)

where

Dtφ = (∂t − iqA0)φ , Dtφ̄ = (∂t + iqA0)φ̄ ,

Dtψα = (∂t − iqA0)ψα , Dtψ̄α = (∂t + iqA0)ψ̄α , (1.52)

Note that the terms linear in A0 couple to a current for the U(1)F symmetry under which

Φ→ Φe−iqΛ , (1.53)

for constant Λ ∈ R.... The gauge field, A0, is around to maintain gauge invariance when we

promote Λ to a function of t... In fact, can promote Λ to a chiral superfield and allow for

supergauge transformations by requiring (1.44)...

• Next week we will use the above discussion to study Berry’s phase in the context of

N = (2, 2) SUSY. This will end our discussion of SQM.
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