
1. Lecture 5:

• In our last lecture, we began the process of taking the 1D particle written as a Lagrangian

integrated over (space)-time

S =

∫
dt

[
1

2

(
dφ

dt

)2

+ iψ∗
dψ

dt
− 1

2
W ′2 +

1

2
[ψ∗, ψ]W ′′

]
, (1.1)

and writing it as a superspace Lagrangian, LS, written over superspace

S =

∫
dtdθdθ∗LS . (1.2)

• To get to this point, we found it useful to introduce a real superfield

Φ(t, θ, θ∗) = φ(t) + θψ(t)− θ∗ψ∗(t) + θθ∗F (t) , (1.3)

containing all the degrees of freedom above (and also the real F field).

• Given a superfield, it was useful to introduce differential operators for the supercharges

(complementing the differential operator, H = i∂t for the Hamiltonian)

Q =
∂

∂θ
+ iθ∗

∂

∂t
, Q† =

∂

∂θ∗
+ iθ

∂

∂t
, (1.4)

where we saw that {Q,Q†} = 2H and {Q,Q} = {Q†,Q†} = 0.

• The operators in (1.4) are useful because they allow us to define a simple action of

supersymmetry on a superfield (i.e., superfields form a representation of the SUSY algebra

with generators given in (1.4))

δΦ = [ηQ+ η∗Q†,Φ] = (ηQ+ η∗Q†)Φ . (1.5)

Note that

[ηQ,Φ] = η(∂θ + iθ∗∂t)Φ = ηψ − θ∗η(F + iφ′)− θθ∗ηiψ′ ,
[η∗Q†,Φ] = η∗(∂θ∗ + iθ∂t)Φ = −η∗ψ∗ + θη∗(F − iφ′)− θθ∗η∗iψ′∗ , (1.6)

Therefore, matching the variations term-by-term in the Grassmann expansion in

δΦ = δφ+ θδψ − θ∗δψ∗ + θθ∗δF , (1.7)

we have that δφ = ηψ−η∗ψ∗, δψ = η∗(F + iφ′), δψ∗ = η(F − iφ′), and δF = −i(ηψ′+η∗ψ′∗),

which agreed with what we found using canonical commutation relations provided we identify

F = W ′(φ) (we will see how this identification occurs shortly).
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• Note that the variation of the top component (i.e., the O(θθ∗) component) is a total

derivative. More generally, for any (say, real) superfield this is true since

X(t, θ, θ∗) = a(t) + θb(t)− θ∗b∗(t) + θθ∗c(t) , (1.8)

and the only way to get a variation in c is to involve the ∂t component of Q and Q†

(the other components would have to act on terms cubic in Grassmann parameters, which

vanish).

• We can now use Grassmann integration to write SUSY invariant actions. Recall∫
dθ =

∫
dθ∗ =

∫
dθθ∗ =

∫
dθ∗θ = 0 ,

∫
dθθ =

∫
dθ∗θ∗ = 1 , dθdθ∗ = −dθ∗dθ ,

(1.9)

which is equivalent to Grassmann differentiation1

{∂θ, θ} = {∂θ∗ , θ∗} = 1 , {∂θ, θ∗} = {∂θ∗ , θ} = 0 , (1.10)

• Therefore, ∫
dtdθdθ∗X (1.11)

is a SUSY invariant for any X.

• In particular, it is natural to consider W (Φ) (i.e., the superpotential)

W (Φ) = W (φ) + θW ′(φ)ψ − θ∗W ′(φ)ψ∗ + θθ∗(FW ′(φ) +
1

2
W ′′(φ)[ψ, ψ∗]) , (1.12)

Therefore, we have that

δ

(∫
dtdθdθ∗W (Φ)

)
= δ

∫
dtFW =

∫
dt∂t(· · · ) = 0 , (1.13)

and ∫
dtdθdθ∗W (Φ) =

∫
dtdθdθ∗θθ∗(FW ′(φ) +

1

2
W ′′(φ)[ψ, ψ∗])

= −FW ′(φ)− 1

2
W ′′(φ)[ψ, ψ∗] = −FW ′(φ) +

1

2
[ψ∗, ψ]W ′′(φ) .(1.14)

which reproduces the fermionic potential terms in (1.1). The peculiar FW ′(φ) term will

make more sense when we add kinetic terms for φ and ψ, and we will see how to reproduce

1We should then define
∫
dθθθ∗ = θ∗ and

∫
dθ∗θθ∗ = −

∫
dθ∗θ∗θ = −θ.
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(1.1). These additional terms, when appropriately completed will be SUSY invariant on

their own as well.

• As is often the case when we introduce new structures in physics, we need to introduce

covariant derivatives to make derivatives transform in a “nice” way under the new structure.

In this case, the covariant superderivatives (which we previewed on the homework)

are

D = ∂θ − iθ∗∂t , D† = ∂θ∗ − iθ∂t . (1.15)

They differ from the corresponding supercharge differential operators by taking t→ −t. We

have

{D,Q} = {D†,Q} = {D,Q†} = {D†,Q†} = {D,D} = {D†,D†} = 0 , {D,D†} = −2H .

(1.16)

and

DΦ = ψ + θ∗(F − iφ′) + θθ∗iψ′ , D†Φ = −ψ† − θ(F + iφ′) + θθ∗iψ′† . (1.17)

Clearly the top component is a total derivative. Therefore,
∫
dθdθ∗DΦ is not a deformation

of the Lagrangian (similar statements hold for DΦ→ D†Φ). Note also, we have that (Note:

the raison d’etre for covariant derivatives is that DΦ should transform under SUSY in the

same way as Φ)

δDΦ = [ηQ+ η∗Q†,DΦ] = D[ηQ+ η∗Q†,Φ] = D(ηQ+ η∗Q†)Φ = (ηQ+ η∗Q†)DΦ , (1.18)

and so superderivatives of superfields transform like superfields under SUSY (in the second

equality above, we have used the fact that Q and Q† act on fields while D acts on

coordinates; in the last equality we have used the anti-commutativity of the superderivatives

and supercharges).

• Therefore, we have

S =

∫
dtdθdθ∗f(Φ,DΦ,D†Φ) , (1.19)

is supersymmetric for real f (this should be clear since it is a real function of superfields

and hence can be written as a sum of real superfields). The most general such Lagrangian

with at most two derivatives is then

S =

∫
dtdθdθ∗

(
−1

2
DΦD†Φ +W (Φ)

)
. (1.20)
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It is instructive to expand this Lagrangian out in coordinates. Doing so, we obtain

S =

∫
dt

(
−1

2
(−iψ′(−ψ∗) + ψ(−iψ′∗)− F 2 − φ′2)−W ′F +

1

2
W ′′(φ)[ψ∗, ψ]

)
=

∫
dt

(
1

2
(φ′2 + F 2) + iψ∗ψ′ −W ′F +

1

2
W ′′[ψ∗, ψ]

)
. (1.21)

• Note that F does not appear with a derivative: it is an auxiliary field... Its equations of

motion can be solved classically (it appears quadratically)... this is called “integrating out

the auxiliary field”

F = W ′(φ) , (1.22)

which derives the identity we used before... Moreover, plugging this result into the above

action gives us what we found before in (1.1). Thus, superspace gives a nice linear

realization of SUSY even in interacting theories and also allows us to easily write

out SUSY Lagrangians.... Can go to more fields

S =

∫
dtdθdθ∗

(
−1

2

∑
i

DΦiD†Φi +W (Φi)

)
(1.23)

• The Φ multiplet we introduced above is an example of a “long” multiplet of fields (Note:

these are different multiplets than the multiplets of states we have discussed so

far...): unless F = 0 (e.g., if W = 0), it has every component of superspace non-zero (this

later case is an example of “superconformal quantum mechanics”... H = d2

dt2
(φ2)). We can

also get short multiplets. These will be useful later. An important example are chiral

(anti-chiral) multiplets:

D†X = 0 , DX† = 0 (1.24)

Such chiral superfields are functions of τ = t− iθθ∗ and θ (note that D†τ = D†θ = 0) while

such anti-chiral superfields are functions of τ ∗ = t+ iθθ∗ and θ∗ (note that Dτ ∗ = Dθ∗ = 0),

so

X = χ(τ) + θψ(τ) = χ(t) + θψ(t)− iθθ∗χ′(t) ,
X∗ = χ∗(τ)− θ∗ψ∗(τ) = χ∗(t)− θ∗ψ∗(t) + iθθ∗χ′∗(t) . (1.25)

• We can then construct new SUSY invariants by considering terms of the form

δL =

∫
dθX +

∫
dθ∗X∗ . (1.26)
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Some such terms cannot be written as integrals over all of superspace. Indeed, it is easy to

check from

δX = [ηQ+ η∗Q†, X] = (ηQ+ η∗Q†)X , (1.27)

that [ηQ, ψ] = 0 and [η∗Q†, ψ] = −2iχ′ (which is a total derivative) and so the above is

indeed an invariant (note [η∗Q†, ψ∗] = 0 and [ηQ, ψ∗] = 2iχ′∗).

• Note also from the above that [
Q†, χ

]
= [Q,χ†] = 0 . (1.28)

These are precisely the Q-closed (anti-chiral) / Q†-closed (chiral) operators we encountered

in our previous lecture. We learn that they are primaries (i.e., first components) of anti-

chiral and chiral superfields.... We get Q-exact operators as primaries of, e.g., DΦ (i.e.,

ψ)and Q†-exact operators as primaries of D†Φ (i.e., ψ∗).

• Easy to show that they form a structure called a ring (known in the SUSY literature as

a “chiral ring”)... Recall that a ring is a set equipped with addition and multiplication.

Addition is associative, commutative, has a 0 element, and an inverse. Multiplication is

associative and has a unit element. Finally multiplication and addition are compatible in

the sense that multiplication is distributive w.r.t. addition... All of the above conditions

are easily verified... It is also simple to see that

D†X1,2 = 0⇒ D†(X1 +X2) = D†(X1X2) = 0 . (1.29)

The multiplication identity follows from the fact that θ2 = 0 (if we just expand in terms

of θ and τ). These rings will play an important role in the field theories we analyze later.

Needless to say, the above properties can easily be generalized to anti-chiral superfields

(note that if X is chiral, then X† is anti-chiral).

• Spaces parameterized by higher dimensional analogs of these operators (e.g., moduli spaces

and conformal manifolds) will naturally give rise to QM: one reason is that the corresponding

operators—like QM operators—do not have singularities when we bring them together...

• The above quantum mechanical system in (1.20) has a U(1)R-symmetry, i.e., an internal

U(1) symmetry that doesn’t commute with SUSY

[R,Q] = −Q , [R,Q†] = Q† , [R,H] = 0 , (1.30)
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which we define to mean that Q has R-charge −1 and Q† has R-charge +1. It is easy to see

that under this symmetry φ has R-charge zero, ψ has R-charge −1, and ψ† has R-charge

+1 (the auxiliary field, F has R-charge zero). Finally, note that the R-charge is

R = ψ†ψ . (1.31)

As we will soon see, the existence of such extra symmetries in many SUSY theories will

lead to powerful constraints.

• In previous lectures, we saw the Witten index was topological: it didn’t depend on explicit

length scales, β (i.e., d
dβ
IW = 0)... Now, we want to link the Witten index to topological

invariants of manifolds... In order to do this, it will be helpful to formalize the relation we

saw above and in the previous lectures between Q and Q† and cohomology. In particular,

let us first show there is a one-to-one correspondence

SUSYgd.states↔ ker(Q†)/Im(Q†) , (1.32)

where ker(Q†) is made up of Q†-closed SUSY states (i.e., those annihilated by Q†). States

that are Q† of something else are in Im(Q†) ⊂ Ker(Q†). The “/” means that we work

modulo terms in Im(Q†) (i.e., if two states in ker(Q†) differ by such terms, we identify these

two states). Since Q†2 = 0, this defines some notion of cohomology....

• To see (1.32), we wish to show Q†|χ〉 = 0 implies |χ〉 = Q†|ψ〉 if and only if χ is not a

SUSY ground state... Suppose |χ〉 is not a SUSY groundstate. Then, the corresponding

E 6= 0 and |ψ〉 = 1
2E
Q|χ〉 6= 0. Acting with Q† then yields |χ〉 = Q†|ψ〉. Next, let us suppose

|χ〉 is a SUSY ground state. In this case, E = 0 but |χ〉 6= Q†|ψ〉 since otherwise |ψ〉 would

have zero energy and we would have 0 = Q†|ψ〉 = |χ〉. q.e.d.

• Comment 1: Replace Q† → d (where d : Ωr(M) → Ωr+1(M)), and you will have the

cohomology you were studying last semester in the Differential Geometry module (that

cohomology was called de Rham cohomology... we call the closed r forms modulo the

exact ones the “rth de Rham cohomology group”, Hr(M)). This is the same idea in a

different guise... In fact, we will see precisely that Q† → d in some interesting examples in

a moment... Here M is a “manifold.” This is a space that locally looks like RN (if it is

N -dimensional), but globally has some more non-trivial structure (that you patch together

via transition functions, e.g., as in the case of a sphere). Don’t worry too much about

technical details of what a manifold is.
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• Comment 2: The Euler characteristic is a useful topological invariant of M. It is defined

as

χ =
∑

(−1)pbp =
∑

(−1)pdim(Hr) . (1.33)

Should remind you a bit of the Witten index... This is no accident. Now, it is useful (for

visualization purposes) to note that χ is related to the alternating sum of dimensions of

homology groups by de Rham’s theorem.

• Roughly speaking, the pth homology group, Hp, is the set of p-dimensional cycles modulo

boundaries. Here a cycle, C ⊂ M is a closed submanifold (i.e., C is compact without

boundary, i.e., ∂C = 0). Boundaries here are cycles that are themselves boundaries of

another submanifold. There is then a natural pairing between elements of Hp and Hp via

integration. Give homework example and circle, which has χ = 0 (related to I...

not an accident). Give torus example (χ = 0).

• More generally for a 2D surface, χ = 2− 2g, where g is the genus (a.k.a., the number of

handles). Momentarily, we will relate it to IW . Same will hold in higher dimensions.

• Before continuing, let us also clear something up from HW2: when φ is compact, we

don’t need to care about φ→ ±∞.... Can still have more normalizable solutions than in

the non-compact case (since fields don’t die off)... Just need to check that wavefunctions

obey boundary conditions...

• Example (the “nlσm”2): Let us use this discussion on a more sophisticated example,

consider

S =

∫
dtdθdθ∗

(
− 1

2
gIJ(Φ)DΦID†ΦJ

)
(1.34)

Where I, J = 1, · · ·N , ΦI : t→M , and M is an N -dimensional compact manifold (again,

don’t worry about the precise definition of this here: it is a space that locally looks like

RN but that has to be “smoothly pieced together” as in the example, say, of a sphere)...

• Here gIJ is a metric on M (it is Riemannian in order for energies to be bounded from

below), and the derivatives are the SUSY covariant derivatives we introduced above...

• We will also assume M is compact (as in the case of a finite radius sphere; a sufficient

condition for this is that every Cauchy sequence of points—i.e., every sequence of points

2This strange terminology dates to ur-QCD physics and the fact that this model is similar in nature to a

model for a particular resonance Murray Gell-Mann was studying: the σ.
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where distances between points go to zero— in M converges in M and that the diameter

of the manifold—i.e., the supremum of geodesic distances— is finite).

• Expanding out in components, we find

L =
1

2
gIJφ

′Iφ′J +
i

2
gIJψ

∗I D

Dt
ψJ +

1

8
RIJKLψ

∗IψJψ∗KψL , (1.35)

where RIJKL is the Riemann tensor of M , and, if we interpret ψ∗I ∼ dφI ∈ Ω1(M) as a

1-form (with ψI as a tangent vector) then D/Dt is the usual covariant derivative.

Exercise: Check the above statement (note that the first term should not involve derivatives

of the metric by what we have said above, while the second term involves both zero and

one derivative terms since it is the usual covariant derivative... the last term must involve

two derivatives of the metric, which is consistent with the fact that the Riemann tensor

has two derivatives...)

• The supercharges generalize what we wrote before (for zero superpotential)3

Q = i
∑
I

ψIπI , Q† = −i
∑
I

ψ∗IπI , πI = −i D
DφI

, H = ∆ (1.37)

where the second to last expression is the covariant derivative on M and H is the Laplacian....

• Now, let’s build the quantum states of this theory. We start from the anti-commutation

relations (Clifford algebra)

{ψ∗I , ψJ} = gIJ . (1.38)

So the theory is built on the state |Ω〉 that is annihilated by all ψI . Acting with raising

operators gives us

FI1,···Ip(φ)ψ∗I1 · · ·ψ∗Ip |Ω〉 . (1.39)

These clearly correspond to p-forms, and, in this case

Q† = d : Ωp → Ωp+1 . (1.40)

Moreover,

Q = d∗ ≡ ∗d∗ : Ωp → Ωp−1 , (1.41)

3Recall that

Q =
1√
~
ψ(W ′ + iπ) , Q† =

1√
~
ψ†(W ′ − iπ) , H =

1

2
(π2 +W ′2 − [ψ†, ψ]W ′′) (1.36)
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where ∗ is the Hodge star.4

Exercise Check the above discussion.

• Then,

2H = dd∗ + d∗d = 2∆ , (1.42)

where ∆ is the Laplacian on M . As we saw above, SUSY groundstates in one to one

correspondence with kerQ†/ImQ†. On the other hand, using our identification Q† = d, we

see the number of SUSY groundstates with fermion number p (assuming |Ω〉 has fermion

number zero) is just given by bp = dimHp(M) since the states in (1.39) are closed p forms...

The Witten index is then the Euler character

Tr(−1)F =
∑
p

(−1)pbp = χ . (1.43)

In the case of the theory on the circle, we see: I = 1− 1 = 0

• Now I want to change topics and discuss SQM with more SUSY... This will lead us to an

interesting discussion of Berry’s phase / Geometrical phase in SQM (applications of this to

SUSY QFT in higher dimensions remain an area of research). We will learn some advanced

concepts that usually appear in QFT courses but here in QM.

• The basic idea behind Berry’s phase is to take a quantum system with some parameters

ri ∈M. Let the corresponding Hamiltonian have a spectrum with quantum numbers na,

|na(ri(t))〉. One then varies the parameters adiabatically (i.e., slowly) and (for our purposes)

assumes no level crossing. Then, under such evolution, the eigenstates are expected to

remain eigenstates and can be followed along the corresponding path (i.e., we start in a

particular eigenstate and stay in that eigenstate). When we come back to the state we

started from along a closed loop, C, then the original state comes back to itself up to a

phase that depends only on the geometry of M and the topology of C (this phase can be

non-abelian).

• Ansatz

|Ψ(t, ri)〉 = exp (iγn(t)) exp

(
− i
~

∫ t

0

En(ri(t))

)
|na(ri(t))〉 . (1.44)

Plugging into the Schrödinger equation

H(ri(t))|Ψ(t, ri)〉 = i~∂t|na(ri(t))〉 , (1.45)

4Taking ω = 1
r!ωµ1···µrdψ

∗µ1 · · · dψ∗µr , we have ∗ω =

√
det(g)

r!(N−r)!ωµ1···µrε
µ1···µr

νr+1···νNdψ
∗νr+1 · · · dψ∗νN ...
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and sandwiching with 〈na(ri(t))| yields

d

dt
γn(t) = i〈na(ri(t))|∂rina(ri(t))〉

dri
dt

, (1.46)

and so

γn(t) =

∮
C
i〈na(ri(t))|∂rina(ri(t))dri . (1.47)

Also can have non-abelian generalization.

• Comment: Generally need to fix gauge (also, need multiple parameters)... Clearly,

not invariant under |n′a(ri(t))〉 = eiχ(ri(t))|na(ri(t))〉 since γ′n(t) = γ′(t) − ~∂tχ(t)... Take

|na(ri(t))〉 and |n′a(ri(t))〉 to be single valued so that χ(T ) = χ(0) + 2πk (k ∈ Z)... Then,

γn(t) = γn(t)− (χ(T )− χ(0)) = γn(t) is gauge invariant...

• Comment: Also, note that Stoke’s theorem is useful here... Indeed,

γn(t) =

∮
C
i〈na(ri(t))|∂rina(ri(t))dri = i

∫
S

(
~∇× 〈n(ri(t))|~∇n(ri(t))〉

)
· d~S . (1.48)

RHS is clearly gauge invariant... However, non-trivial sometimes to evaluate RHS... So,

defining ~V ≡ i~∇× 〈n|~∇n〉, we have

~V = i〈~∇n| × |~∇n〉 = i
∑
m

〈~∇n|m〉 × 〈m|~∇n〉 (1.49)

These latter quantities can be related to matrix elements of ~∇H. To see this, note that

~∇〈m|H|n〉 = En~∇〈m|n〉 = 0 = 〈~∇m|H|n〉+ 〈m|~∇H|n〉+ 〈m|H|~∇n〉 (1.50)

Note also that orthonormalization of the basis implies

~∇〈m|n〉 = ~∇δmn = 0 = 〈~∇m|n〉+ 〈m|~∇n〉 . (1.51)

Plugging this into the previous equation yields

0 = (En − Em)〈~∇m|n〉+ 〈m|∇H|n〉 . (1.52)

Note, by (1.51), we have that the term in (1.49) with m = n vanishes since it is the cross

product of a vector with itself. Therefore, we obtain

~V =
∑
m 6=n

〈n|~∇H|m〉 × 〈m|~∇H|n〉
(En − Em)2

, (1.53)
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with γ the corresponding surface integral.

Exercise: Spin 1/2 particle in magnetic field, ~B ∈ R3 has H = ~B · ~σ... Here the ~B is the

set of parameters, i.e., Bi = ri for i = 1, 2, 3. So, we have ~∇H = ~σ. Then, given above,

check that

~∇× ~A =
~B

2B3
. (1.54)

This is the connection of a Dirac monopole... We will find a SUSY construction of this

monopole soon... It will illustrate an important idea in SUSY: background fields.

• Next week we will introduce an extended version of SQM and see how Berry’s phase

enters. These lessons will have important implications for RG flows in higher dimensions.
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