
1. Lecture 4: More N = 2 QM superspace and some applications

• Before continuing with our discussion of superspace and getting to some applications, let

us briefly review what we learned in the last lecture.

• We started by defining multiplets of operators for the 1D particle on a line (involving φ(t)

and ψ(t)). To make SUSY more manifest, we first introduced the Schrödinger operators

ψ ≡
√
~σ− , ψ† ≡

√
~σ+ . (1.1)

These operators satisfy the following relations

{ψ, ψ} =
{
ψ†, ψ†

}
= 0 ,

{
ψ, ψ†

}
= ~ . (1.2)

In the Heisenberg picture, these operators become field operators, ψ(t). The quantities we

introduced before become

Q =
1√
~
ψ(W ′ + iπ) , Q† =

1√
~
ψ†(W ′ − iπ) , H =

1

2
(π2 +W ′2 − [ψ†, ψ]W ′′) (1.3)

• For any field, χ, we defined the SUSY variation

δχ =
[
ηQ+ η∗Q†, χ

]
, (1.4)

where η, η∗ are Grassmann numbers, so they satisfy

η2 = η∗2 = 0 , ηη∗ = −η∗η . (1.5)

More generally, have Grassmann numbers η1,2 satisfying

η21 = η22 = 0 , η1η2 = −η2η1 , (η1η2)
∗ = η∗2η

∗
1 . (1.6)

Note that we have (δχ)† = δχ†. Moreover using (1.2), (1.3), and the commutation relation

[π, φ] = −i~, we saw (setting ~ = 1)

[ηQ, φ] = ηψ , [η∗Q†, φ] = −η∗ψ† , [ηQ, ψ] = 0 , [η∗Q†, ψ] = η∗(W ′ − iπ) ,

[ηQ, ψ†] = η(W ′ + iπ) , [η∗Q†, ψ†] = 0 . (1.7)

We have

δφ = ηψ − η∗ψ† , δψ = η∗(W ′ − iπ) , δψ† = η(W ′ + iπ) . (1.8)
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• Recall that we can obtain the Hamiltonian in (1.3) via the usual procedure of Legendre

transformation1 and canonical quantization from the following Lagrangian (Note: I will be

a bit careless with ψ†, ψ∗, ψ̄.)

S =

∫
dt

[
1

2

(
dφ

dt

)2

+ iψ∗
dψ

dt
− 1

2
W ′2 +

1

2
[ψ∗, ψ]W ′′

]
. (1.9)

• An important part of this module will be constructing SUSY-invariant Lagrangians...

Superspace will be very useful here...

• We also discussed superspace: a completion of space time in which the coordinate, t,

dual to H is completed by Grassmann numbers θ dual to Q and θ∗ dual to Q†. We also

constructed the most general real representation on superspace

Φ(t, θ, θ∗) = φ(t) + θψ(t)− θ∗ψ∗(t) + θθ∗F (t) , (1.10)

where there cannot be higher-order terms since θ2 = (θ∗)2 = 0. The fields φ = φ∗ and

F = F ∗. The fields φ, ψ, ψ∗, F are the “components” of the superfield, Φ.... φ(t) is often

referred to as the “bottom component” of the superfield (or the “primary”) and F is referred

to as the “top component.”

• Now, in analogy with the differential form of the Hamiltonian, let us construct the

following differential operators on superspace

Q =
∂

∂θ
+ iθ∗

∂

∂t
, Q† =

∂

∂θ∗
+ iθ

∂

∂t
, (1.11)

It is straightforward to verify that

{Q,Q†} =
∂

∂θ

∂

∂θ∗
+ i

∂

∂t
− iθ ∂

∂t

∂

∂θ
+ iθ∗

∂

∂t

∂

∂θ∗
− θ∗θ ∂

2

∂t2

+
∂

∂θ∗
∂

∂θ
+ i

∂

∂t
+ iθ

∂

∂t

∂

∂θ
− iθ∗ ∂

∂t

∂

∂θ∗
− θθ∗ ∂

2

∂t2

= 2i
∂

∂t
= 2H . (1.12)

Note also that {Q,Q} = {Q†,Q†} = 0 and that(
∂

∂t

)†
= − ∂

∂t
,

(
∂

∂θ

)†
=

∂

∂θ∗
, (1.13)

1H = φ′π + ψ′πψ − L, where π = ∂L
∂φ′ = φ′ and πψ = ∂L

∂ψ′ = −iψ∗.
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where the first equality follows from integration by parts and the second follows from our

reality conventions for Grassmann numbers.

The operators in (1.11) are useful because they allow us to define a simple action of

supersymmetry on a superfield (i.e., superfields form a representation of the SUSY algebra

with generators given in (1.11))

δΦ = [ηQ+ η∗Q†,Φ] = (ηQ+ η∗Q†)Φ . (1.14)

Note that

[ηQ,Φ] = η(∂θ + iθ∗∂t)Φ = ηψ − θ∗η(F + iφ′)− θθ∗ηiψ′ ,
[η∗Q†,Φ] = η∗(∂θ∗ + iθ∂t)Φ = −η∗ψ∗ + θη∗(F − iφ′)− θθ∗η∗iψ′∗ , (1.15)

Therefore, matching the variations term-by-term in the Grassmann expansion in

δΦ = δφ+ θδψ − θ∗δψ∗ + θθ∗δF , (1.16)

we have, at zeroth order in the Grassmann numbers, that δφ = ηψ − η∗ψ∗, which agrees

with (1.8) (we can also check that the other SUSY variations are compatible with this

discussion... you will do this more extensively on the homework).

• Also, note that matching at order θθ∗, δF = i(−ηψ′ − η∗ψ′†) = −i∂t(ηψ + η∗ψ†), which is

a total derivative. It is now easy to write invariant actions. To do that, let us introduce∫
dθ =

∫
dθ∗ =

∫
dθθ∗ =

∫
dθ∗θ = 0 ,

∫
dθθ =

∫
dθ∗θ∗ = 1 , dθdθ∗ = −dθ∗dθ ,

(1.17)

which is equivalent to Grassmann differentiation2

{∂θ, θ} = {∂θ∗ , θ∗} = 1 , {∂θ, θ∗} = {∂θ∗ , θ} = 0 , (1.18)

Now, note that sums and products of real superfields are real superfields! For example,

Φ2 = φ2 + 2θφψ − 2θ∗φψ∗ + θθ∗(2Fφ+ [ψ, ψ∗]) , (1.19)

and more generally

W (Φ) = W (φ) + θW ′(φ)ψ − θ∗W ′(φ)ψ∗ + θθ∗(FW ′(φ) +
1

2
W ′′(φ)[ψ, ψ∗]) , (1.20)

2We should then define
∫
dθθθ∗ = θ∗ and

∫
dθ∗θθ∗ = −

∫
dθ∗θ∗θ = −θ.
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Therefore, we have that

δ

(∫
dtdθdθ∗W (Φ)

)
= δ

∫
dtFW =

∫
dt∂t(· · · ) = 0 , (1.21)

where we have treated W as a real superfield (i.e., products and sums of real superfields

are still real superfields)..

• Note that∫
dtdθdθ∗W (Φ) =

∫
dtdθdθ∗θθ∗(FW ′(φ) +

1

2
W ′′(φ)[ψ, ψ∗])

= −FW ′(φ)− 1

2
W ′′(φ)[ψ, ψ∗] = −FW ′(φ) +

1

2
[ψ∗, ψ]W ′′(φ) ,(1.22)

which reproduces the fermionic potential terms in (1.9). The peculiar FW ′(φ) term will

make more sense when we add kinetic terms for φ and ψ, and we will see how to reproduce

(1.9). These additional terms, when appropriately completed will be SUSY invariant on

their own as well.

• As is often the case when we introduce new structures in physics, we need to introduce

covariant derivatives to make derivatives transform in a “nice” way under the new structure.

In this case, the covariant superderivatives are

D = ∂θ − iθ∗∂t , D† = ∂θ∗ − iθ∂t . (1.23)

They differ from the corresponding supercharge differential operators by taking t→ −t. We

have

{D,Q} = {D†,Q} = {D,Q†} = {D†,Q†} = {D,D} = {D†,D†} = 0 , {D,D†} = −2H .

(1.24)

and therefore

DΦ = ψ + θ∗(F − iφ′) + θθ∗iψ′ , D†Φ = −ψ† − θ(F + iφ′) + θθ∗iψ′† . (1.25)

Clearly the top component is a total derivative. Therefore,
∫
dθdθ∗DΦ is not a deformation

of the Lagrangian (similar statements hold for DΦ→ D†Φ). Note also, we have that (Note:

the raison d’etre for covariant derivatives is that DΦ should transform under SUSY in the

same way as Φ)

δDΦ = [ηQ+ η∗Q†,DΦ] = D[ηQ+ η∗Q†,Φ] = D(ηQ+ η∗Q†)Φ = (ηQ+ η∗Q†)DΦ , (1.26)
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and so superderivatives of superfields transform like superfields under SUSY (in the second

equality above, we have used the fact that Q and Q† act on fields while D acts on

coordinates; in the last equality we have used the anti-commutativity of the superderivatives

and supercharges).

• Therefore, we have

S =

∫
dtdθdθ∗f(Φ,DΦ,D†Φ) , (1.27)

is supersymmetric for real f (this should be clear since it is a real function of superfields

and hence can be written as a sum of real superfields). The most general such Lagrangian

with at most two derivatives is then

S =

∫
dtdθdθ∗

(
−1

2
DΦD†Φ +W (Φ)

)
. (1.28)

It is instructive to expand this Lagrangian out in coordinates. Doing so, we obtain

S =

∫
dt

(
−1

2
(−iψ′(−ψ∗) + ψ(−iψ′∗)− F 2 − φ′2)−W ′F +

1

2
W ′′(φ)[ψ∗, ψ]

)
=

∫
dt

(
1

2
(φ′2 + F 2) + iψ∗ψ′ −W ′F +

1

2
W ′′[ψ∗, ψ]

)
. (1.29)

• Note that F does not appear with a derivative: it is an auxiliary field... Its equations of

motion can be solved classically (it appears quadratically)... this is called “integrating out

the auxiliary field”

F = W ′(φ) , (1.30)

which derives the identity we used before... Moreover, plugging this result into the above

action gives us what we found before in (1.9). Thus, superspace gives a nice linear

realization of SUSY even in interacting theories and also allows us to easily write out SUSY

lagrangians.... Can go to more fields (will explore this more on homework)

S =

∫
dtdθdθ∗

(
−1

2

∑
i

DΦiD†Φi +W (Φi)

)
(1.31)

• Write out the component lagrangian for (1.31) and integrate out the auxiliary fields in

homework.

• The Φ multiplet we introduced above is an example of a “long” multiplet of fields (Note:

these are different multiplets than the multiplets of states we have discussed so
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far...): unless F = 0 (e.g., if W = 0), it has every component of superspace non-zero (this

later case is an example of “superconformal quantum mechanics”... H = d2

dt2
(φ2)). We can

also get short multiplets. These will be useful later. An important example are chiral

(anti-chiral) multiplets:

D†X = 0 , DX† = 0 (1.32)

Such chiral superfields are functions of τ = t− iθθ∗ and θ (note that D†τ = D†θ = 0) while

such anti-chiral superfields are functions of τ ∗ = t+ iθθ∗ and θ∗ (note that Dτ ∗ = Dθ∗ = 0),

so

X = χ(τ) + θψ(τ) = χ(t) + θψ(t)− iθθ∗χ′(t) ,
X∗ = χ∗(τ)− θ∗ψ∗(τ) = χ∗(t)− θ∗ψ∗(t) + iθθ∗χ′∗(t) . (1.33)

• We can then construct new SUSY invariants by considering terms of the form

δL =

∫
dθX +

∫
dθ∗X∗ . (1.34)

Some such terms cannot be written as integrals over all of superspace. Indeed, it is easy to

check from

δX = [ηQ+ η∗Q†, X] = (ηQ+ η∗Q†)X , (1.35)

that [ηQ, ψ] = 0 and [η∗Q†, ψ] = −2iχ′ (which is a total derivative) and so the above is

indeed an invariant (note [η∗Q†, ψ∗] = 0 and [ηQ, ψ∗] = 2iχ′∗).

• Note also from the above that [
Q†, χ

]
= [Q,χ†] = 0 . (1.36)

These are precisely the Q-closed (anti-chiral) / Q†-closed (chiral) operators we encountered

in our previous lecture. We learn that they are primaries (i.e., first components) of anti-

chiral and chiral superfields.... We get Q-exact operators as primaries of, e.g., DΦ (i.e.,

ψ)and Q†-exact operators as primaries of D†Φ (i.e., ψ∗).

• Easy to show that they form a structure called a ring (known in the SUSY literature as

a “chiral ring”)... Recall that a ring is a set equipped with addition and multiplication.

Addition is associative, commutative, has a 0 element, and an inverse. Multiplication is

associative and has a unit element. Finally multiplication and addition are compatible in

the sense that multiplication is distributive w.r.t. addition... All of the above conditions

are easily verified... It is also simple to see that

D†X1,2 = 0⇒ D†(X1 +X2) = D†(X1X2) = 0 . (1.37)
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The multiplication identity follows from the fact that θ2 = 0 (if we just expand in terms

of θ and τ). These rings will play an important role in the field theories we analyze later.

Needless to say, the above properties can easily be generalized to anti-chiral superfields

(note that if X is chiral, then X† is anti-chiral).

• Spaces parameterized by higher dimensional analogs of these operators (e.g., moduli spaces

and conformal manifolds) will naturally give rise to QM: one reason is that the corresponding

operators—like QM operators—do not have singularities when we bring them together...

• The above quantum mechanical system in (1.28) has a U(1)R-symmetry, i.e., an internal

U(1) symmetry that doesn’t commute with SUSY

[R,Q] = −Q , [R,Q†] = Q† , [R,H] = 0 , (1.38)

which we define to mean that Q has R-charge −1 and Q† has R-charge +1. It is easy to see

that under this symmetry φ has R-charge zero, ψ has R-charge −1, and ψ† has R-charge

+1 (the auxiliary field, F has R-charge zero). Finally, note that the R-charge is

R = ψ†ψ . (1.39)

As we will soon see, the existence of such extra symmetries in many SUSY theories will

lead to powerful constraints.

• We saw the Witten index was topological: it didn’t depend on explicit length scales,

β (i.e., d
dβ
IW = 0)... Now, we want to link the Witten index to topological invariants of

manifolds... In order to do this, it will be helpful to formalize the relation we saw above

and in the previous lecture between Q and Q† and cohomology. In particular, let us first

show there is a one-to-one correspondence

SUSYgd.states↔ ker(Q†)/Im(Q†) , (1.40)

where ker(Q†) is made up of Q†-closed SUSY states (i.e., those annihilated by Q†). States

that are Q† of something else are in Im(Q†) ⊂ Ker(Q†). The “/” means that we work

modulo terms in Im(Q†) (i.e., if two states in ker(Q†) differ by such terms, we identify

these two states). Since Q†2 = 0, this defines some notion of cohomology.... Indeed, replace

Q† → d, and you will have the cohomology you were studying last semester in the Differential

Geometry module. This is the same idea in a different guise.

• To see (1.40), we wish to show Q†χ = 0 implies χ = Q†ψ if and only if χ is not a SUSY

ground state... Suppose χ is not a SUSY groundstate. Then, the corresponding E 6= 0 and
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ψ = 1
2E
Qχ 6= 0. Acting with Q† then yields χ = Q†ψ. Next, let us suppose χ is a SUSY

ground state. In this case, E = 0 but χ 6= Q†ψ since otherwise ψ would have zero energy

and we would have 0 = Q†ψ = χ. q.e.d.

• Next week we will use this lemma to study the non-linear sigma model.
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