
1. Lecture 3: N = 2 QM superspace

• Before getting to superspace, let us briefly review what we learned in the last lecture.

• First, we introduced the Witten index

I = Tr|H(−1)F e−βH = nSUSYB − nSUSYF , β > 0 , (1.1)

where we argued that the index didn’t depend on β or on parameters of the problem (we

will come back to this statement in this lecture).

• To make things more concrete, we studied a 1D particle with supercharges given by

Q ≡ σ− (W ′(φ) + iπ) , Q† ≡ σ+ (W ′(φ)− iπ) , (1.2)

and a Hamiltonian {
Q,Q†

}
= (π2 +W ′2)1− ~W ′′σ3 ≡ 2H . (1.3)

We argued that there are classical SUSY vacua at

W ′ = 0 , (1.4)

and that we could compute exact SUSY vacua by acting with the above supercharges on

Ω =

(
f+(φ)

f−(φ)

)
, (1.5)

where f± is the component of the wavefunction in the H± part of the Hilbert space.

• Acting with the supercharges yields

Q|Ω〉 = 0 ⇒ (W ′(φ) + iπ)f+ = 0 ,

Q†|Ω〉 = 0 ⇒ (W ′(φ)− iπ)f− = 0 . (1.6)

and so

f± = κ±e
∓W
h̄ . (1.7)

• In class, we assumed that the spectrum of the operator φ was the set of real numbers,

R (although, we will study the more general Spectrum(φi) ∈ M for some more general

compact Riemannian manifold, M, soon). In this case, for polynomial W , we saw that odd

polynomials lead to no exact SUSY ground state since both f± must blow up in one of the

directions φ→∞ or φ→ −∞. For even polynomials, we saw that there was necessarily
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a unique ground state: if W = a2nφ
2n + · · · , then, if a2n > 0, we see that W → ∞ for

|φ| → ∞ and so only f+ is normalizable.... OTOH, if a2n < 0, we see that W → −∞ as

|φ| → ∞ and only f− is normalizable... Therefore, the Witten index in these cases is just

I = sign(a2n)....

• As a simple example, we took the SHO with W = λ
2
(φ− a)2 and λ > 0... In this case, we

had a pair of shifted bosonic SHOs

H =
1

2

[(
π2 + λ2(φ− a)2

)
1− ~λσ3

]
. (1.8)

• We have one classical vacuum (at φ = a) and I = +1. Quantum mechanically, applying

our general discussion, we have

Ω0 = (κ+e
− λ

2~ (φ−a)
2

0)T . (1.9)

• Make contact with what you knew before: Each component above is related to a

SHO (with a shifted vacuum) energy. Therefore, know from QM, that we have solutions

Ωn,+ = (ωn 0)T , Ωn,− = (0 ωn)T , (1.10)

where ωn = 〈φ|n〉 are the SHO eigenfunctions (i.e., Hermite polynomials times Gaussians...

for n = 0, we get the above correctly). We have,

HΩn,± = En,±Ωn,± , En,± = ~λ
(
n+

1

2
∓ 1

2

)
, (1.11)

where the energy shift is due to the σ3 shift in (1.8) proportional to fermion number. Note

En,+ = ~λn and En,− = ~λ(n + 1). The groundstate is E0,+ and is bosonic, while the

excited states are paired up (bosonic and fermionic)—purely a matter of convention. Note

diagram in Fig. 1:
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Fig. 1. From Ken Intriligator’s notes: x = + and 0 = −...

In particular, we have

Tr(−1)F e−βH = +1 , (1.12)

Notice that the vanishing energy is an example of the cancelation we see in SUSY ob-

servables... This phenomenon is a baby version of the cancellation between fermionic and

bosonic contributions to the Higgs mass alluded to in lecture 1 (again will become clearer

after some conceptual / notational cleanup in later lectures).

• Note that if we then continue to λ < 0, the Witten index flips sign since the normalizable

solution is now f− = κ−e
λ
2~ (φ−a)

2
...

• Comment 1: Also, good local approximation for other potentials around their local

maxima and minima, i.e., around the classical vacua... We can work classically around each

minimum and there

W ′′ > 0 . (1.13)

The corresponding classical contribution to the Witten index is then +1 as in the λ > 0

case above... Around each maximum, we have

W ′′ < 0 . (1.14)

The corresponding classical contribution to the Witten index is then −1 as in the λ < 0

case...
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• Comment 2: Note that (almost!) no matter what we do for W (φ) = a2φ
2 + a1φ + a0

with, say, a2 > 0 and a1 < 0, we would still find a SUSY ground state above... Don’t need

zeros of W ... W ′ = 2a2φ+ a1... Will intersect φ axis as long as a2 6= 0... But what if we

set a2 → 0+? Then, (say with a1 6= 0), the LHS of the parabola goes off to infinity and we

change the potential at infinity... Change Hilbert because change boundary conditions (and

make infinitely large change in energy)... Then, derivative becomes constant non-zero and

no classical solutions (SUSY is broken classically... Witten index is zero)... If a1 = 0, SUSY

is still broken because no zero energy normalizable wavefunction...

• Now, imagine that we take δW = a3φ
3 with a3 > 0. We end up with something as in

Fig. 2

Fig. 2. From Ken Intriligator’s notes

• Again, we have changed the behavior of the potential at infinity... We have brought in

a classical vacuum at φ = a... Think about this as two SHOs localized around a and b...

In this case, a is fermionic (here W ′′ < 0, so the contribution to the Witten index is −1),

while b is bosonic (here W ′′ > 0, so the contribution to the Witten index is +1) so the

Witten index vanishes:

I = −1 + 1 = 0 , (1.15)

where we have examined the classical solutions around φ = a, b...

• So, what happens quantum mechanically? Well, we know there is no normalizable solution:

the two classical short representations paired up to become a long representation and leave

the zero energy part of the Hilbert space... This is done via tunneling effects that lead to

non-zero energy... More precisely via objects called “instantons”... This is a fun topic I

wish we could cover, but there will be lots of other fun stuff to get to.
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• Note also, that we could have arranged a → b so that the two classical vacua coalesce

into a single vacuum with I = 0 (here W ′′ = 0)... Also, we could have arranged for there

to be no real solutions to W ′ = 0... This would have led to classical SUSY breaking... As

opposed to above “dynamical” SUSY breaking...

• Consider now the more general

W = λKφ
K + λK−1φ

K−1 + λK−2φ
K−2 + · · · . (1.16)

For λK 6= 0, I is independent of λK−1, λK−2, · · · . However, if we tune λK → 0, then I

changes. For example, if K even and λK → 0±, then I changes from ±1 to 0 (here I am

assuming that an odd term is the leading term as we take this limit, e.g., λK−1 6= 0... For

example, if an even term is the leading term in this limit then we would just get a jump

directly between ±1...).

Let’s assume that λK > 0. Then, we have the situation in Fig. 3

Fig. 3. From Ken Intriligator’s notes

The exact groundstate is Ω = (e−
W
~ 0)T ... This wavefunction is peaked at “+” vacua...

Clearly, I = +1... This answer is exact since I doesn’t depend on ~....The various ± pairs

pair up (via tunneling) and become “long” multiplets of SUSY.... Again I changes as we

take λK → 0 with vacua moving to/from infinity.... As long as we don’t do this, we can go
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to weak coupling and our answer doesn’t change (this is a common thing that happens in

SUSY).

Exercise 2.3: If λK → 0± and K is odd, then what happens to the Witten index?

• At the beginning of the lecture, we argued that the Witten index is essentially independent

of β > 0... Here we will get another perspective on this independence.

• To understand this statement, first recall that H = 1
2

{
Q,Q†

}
= 1

2

[
Q,Q†

]
+

(here AB ±
BA = [A,B]±) with Q2 = 0. We then define

Φ± = [Q,ϕ∓]± , (1.17)

to be “Q-exact”, where the subscript under the field corresponds to the eigenvalue of (−1)F .

In this sense, the Hamiltonian is Q-exact. More generally, we have operators satisfying

[Q,Φ±]∓ = 0 , (1.18)

that are called “Q-closed” or “(anti) chiral.”

Exercise 2.2: Prove that all Q-exact operators are Q-closed. The converse is not necessarily

true, i.e., there are, in general, Q-closed observables that are not Q-exact.

• Comment: Could have exchanged role of Q and Q†.

• Aside (for those who have studied differential geometry): This discussion should

remind you of differential geometry: in particular, Q is like an exterior derivative, d (which

also satisfies d2 = 0). Recall that differential forms that can be written as ωk+1 = dωk

for some well-defined ωk are called “exact” and those satisfying dω = 0 are called “closed”

(they need not be exact). We have borrowed this terminology above.

• The independence of I on β now follows since

d

dβ
I = −Tr(−1)F exp (−βH)H = −Tr(−1)F exp (−βH) (QQ† +Q†Q)

= −Tr(−1)F exp (−βH) (QQ† −QQ†) = 0 , (1.19)

where, in the second-to-last inequality, we have used cyclicity of the trace (which we can

get by inserting complete sets of states,
∑

a |a〉〈a| = 1, between each operator) and the fact

that (−1)FQ = −Q(−1)F .
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• We also have that other observables do not depend on β.... Treating I = Tr(−1)F e−βH

as our partition function, we can also show that the one-point function of an observable,

Φ±, is independent of T under certain conditions

d

dβ
〈Φ+〉 ≡

d

dβ
Tr(−1)F exp(−βH)Φ+ = −Tr(−1)F exp(−βH)HΦ+

= −Tr(−1)F exp(−βH)(QQ† +Q†Q)Φ+

= −Tr(−1)F exp(−βH)(QQ†Φ+ +Q†Φ+Q+Q† [Q,Φ+]−)

= −Tr(−1)F exp(−βH)(QQ†Φ+ −QQ†Φ+ +Q† [Q,Φ+]−)

= −Tr(−1)F exp(−βH)Q† [Q,Φ+]− . (1.20)

Clearly, if the operator is Q-closed / (anti) chiral, then

[Q,Φ+]− = 0 ⇒ d

dβ
〈Φ+〉 = 0 . (1.21)

• Note that if we had taken Φ−, then the trace would identically vanish (since the only

non-zero matrix elements would be between bosonic kets and fermionic bras and vice versa...

in the trace, such “off-diagonal” elements do not contribute to the trace). It is possible

to generalize the above discussion to higher point functions.... We will study properties of

such Q-closed /chiral operators in higher dimensions...

• Will potentially revisit above after a bit more notation and exposition... Will have a

natural interpretation as a partition function on a circle of length β (with the (−1)F factor

inserted to make the fermions periodic around the circle, just like the bosons)...

• The above discussion suggests that the QM we have been studying is “topological,” in the

sense that the partition function—and appropriately defined observables, i.e., correlation

functions of the Q-closed or chiral observables— do not depend on the scale β.

• Now let’s move on to superspace.... i.e., the promised SUSY completion of space-time...

Nice philosophical completion: H is bosonic and generates evolution of time... Q, Q† are

fermionic and should generate translation in a fermionic space... Superfields can be taylor

expanded in terms of component fields of bosonic and fermionic nature... Will also make it

easy and systematic to construct more complicated SUSY theories...

• However, let us first revisit our two-component wavefunction example and clean up /

clarify notation by making fermions more manifest... Define the Schrödinger operators

ψ ≡
√
~σ− , ψ† ≡

√
~σ+ . (1.22)
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These operators satisfy the following relations

{ψ, ψ} =
{
ψ†, ψ†

}
= 0 ,

{
ψ, ψ†

}
= ~ . (1.23)

In the Heisenberg picture, these operators become field operators, ψ(t). The quantities we

introduced in the previous lecture become

Q =
1√
~
ψ(W ′ + iπ) , Q† =

1√
~
ψ†(W ′ − iπ) , H =

1

2
(π2 +W ′2 − [ψ†, ψ]W ′′) (1.24)

• For any field, χ, we define the SUSY variation

δχ =
[
ηQ+ η∗Q†, χ

]
, (1.25)

where η, η∗ are Grassmann numbers, so they satisfy

η2 = η∗2 = 0 , ηη∗ = −η∗η . (1.26)

More generally, have Grassmann numbers η1,2 satisfying

η21 = η22 = 0 , η1η2 = −η2η1 , (η1η2)
∗ = η∗2η

∗
1 . (1.27)

Note that we have (δχ)† = δχ†. Moreover using (1.23), (1.24), and the commutation relation

[π, φ] = −i~, we see (setting ~ = 1)

[ηQ, φ] = ηψ , [η∗Q†, φ] = −η∗ψ† , [ηQ, ψ] = 0 , [η∗Q†, ψ] = η∗(W ′ − iπ) ,

[ηQ, ψ†] = η(W ′ + iπ) , [η∗Q†, ψ†] = 0 . (1.28)

We have

δφ = ηψ − η∗ψ† , δψ = η∗(W ′ − iπ) , δψ† = η(W ′ + iπ) . (1.29)

• It will be useful for us to define actions and Lagrangians for our theories—the actions

will be integrals of local Lagrangians (i.e., of terms involving products of fields defined at

particular space-time points) over “superspace” (a generalization of the ordinary spacetime–

in this case time, t)... Also, naturally leads to relativistically invariant theories in higher

dimensions... since don’t pick out a preferred time direction there...

• Note that in the ~ → 0 limit, the ψ fields become just grassman numbers / functions:

they are just fields taking values in the anti-commuting numbers / Grassmann numbers (all

the anti-commutators in (1.23) vanish, and we write {ψ, ψ} = {ψ∗, ψ∗} = {ψ, ψ∗} = 0). We

can write simple Lagrangians out of these fields.
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• Note that we can obtain the Hamiltonian in (1.24) via the usual procedure of Legendre

transformation1 and canonical quantization from the following Lagrangian (Note: I will be

a bit careless with ψ†, ψ∗, ψ̄.)

S =

∫
dt

[
1

2

(
dφ

dt

)2

+ iψ∗
dψ

dt
− 1

2
W ′2 +

1

2
[ψ∗, ψ]W ′′

]
. (1.30)

Recalling (ψ1ψ2)
∗ = ψ∗2ψ

∗
1, we see that S is real (recall that φ is real). Note: the ordering

of fermions2...

• Let us consider the fluctuations around classical minima of the potential, V = 1
2
W ′2

V ′|W ′=0 = W ′W ′′ = 0 , V ′′|W ′=0 = W ′′2 . (1.31)

In particular, we see that the mass of the boson is mφ = W ′′|W ′=0. This is the same as the

fermionic mass if we think of the last term as a fermionic mass term, i.e., we have

mφ = W ′′|W ′=0 = mψ (1.32)

as discussed in lecture 1.

• It should now be clear in what sense bosonic and fermionic contributions to the SUSY

SHO groundstate gave us zero energy...

• Let us now discuss superspace, i.e., the extension of regular space to include anti-

commuting coordinates. Since we are doing quantum mechanics, we have a single bosonic

coordinate, t (it has the usual behavior we expect for coordinates, e.g., tn 6= 0 if t 6= 0)...

This coordinate is “dual” to H (in the sense that H = i∂t generates time evolution). So we

should also have Grassmann coordinates dual to Q and Q†—these will be called θ and θ∗.

A real superfield, Φ, is the most general real function on superspace.

Φ(t, θ, θ∗) = φ(t) + θψ(t)− θ∗ψ∗(t) + θθ∗F (t) , (1.33)

where there cannot be higher-order terms since θ2 = (θ∗)2 = 0. We then see that φ = φ∗

and F = F ∗. The fields φ, ψ, ψ∗, F are the “components” of the superfield, Φ.... φ(t) is

1H = φ′π + ψ′πψ − L, where π = ∂L
∂φ′ = φ′ and πψ = ∂L

∂ψ′ = −iψ∗.
2In the limit that the ψ,ψ∗ become Grassmann functions, [ψ∗, ψ] = 2ψ∗ψ. Indeed, these two expressions

differ by higher-order terms in ~ although they are equivalent at leading order in ~. This phenomenon is

common, and such ambiguities are referred to as “contact” terms. We need to choose the form in (1.30)

to preserve SUSY in the quantum theory... As we will see, such terms arise naturally in the superspace

formulation.
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often referred to as the “bottom component” of the superfield (or the “primary”) and F is

referred to as the “top component.”

• Now, in analogy with the differential form of the Hamiltonian, we can construct the

following differential operators on superspace

Q =
∂

∂θ
+ iθ∗

∂

∂t
, Q† =

∂

∂θ∗
+ iθ

∂

∂t
. (1.34)

It is straightforward to verify that

{Q,Q†} =
∂

∂θ

∂

∂θ∗
+ i

∂

∂t
− iθ ∂

∂t

∂

∂θ
+ iθ∗

∂

∂t

∂

∂θ∗
− θ∗θ ∂

2

∂t2

+
∂

∂θ∗
∂

∂θ
+ i

∂

∂t
+ iθ

∂

∂t

∂

∂θ
− iθ∗ ∂

∂t

∂

∂θ∗
− θθ∗ ∂

2

∂t2

= 2i
∂

∂t
= 2H . (1.35)

Note also that {Q,Q} = {Q†,Q†} = 0 and that(
∂

∂t

)†
= − ∂

∂t
,

(
∂

∂θ

)†
=

∂

∂θ∗
, (1.36)

where the first equality follows from integration by parts and the second follows from our

reality conventions for Grassmann numbers.

The operators in (1.34) are useful because they allow us to define a simple action of

supersymmetry on a superfield (i.e., superfields form a representation of the SUSY algebra

with generators given in (1.34))

δΦ = [ηQ+ η∗Q†,Φ] = (ηQ+ η∗Q†)Φ . (1.37)

Note that

[ηQ,Φ] = η(∂θ + iθ∗∂t)Φ = ηψ − θ∗η(F + iφ′)− θθ∗ηiψ′ ,
[η∗Q†,Φ] = η∗(∂θ∗ + iθ∂t)Φ = −η∗ψ∗ + θη∗(F − iφ′)− θθ∗η∗iψ′∗ , (1.38)

Therefore, matching the variations term-by-term in the Grassmann expansion in

δΦ = δφ+ θδψ − θ∗δψ∗ + θθ∗δF , (1.39)

we have, at zeroth order in the Grassmann numbers, that δφ = ηψ − η∗ψ∗, which agrees

with (1.29) (we can also check that the other SUSY variations are compatible with this

discussion... you will do this more extensively on the homework).
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• Also, note that matching at order θθ∗, δF = i(−ηψ′ − η∗ψ′†) = −i∂t(ηψ + η∗ψ†), which is

a total derivative. It is now easy to write invariant actions. To do that, let us introduce∫
dθ =

∫
dθ∗ =

∫
dθθ∗ =

∫
dθ∗θ = 0 ,

∫
dθθ =

∫
dθ∗θ∗ = 1 , dθdθ∗ = −dθ∗dθ ,

(1.40)

which is equivalent to Grassmann integration3

{∂θ, θ} = {∂θ∗ , θ∗} = 1 , {∂θ, θ∗} = {∂θ∗ , θ} = 0 , (1.41)

Now, note that sums and products of real superfields are real superfields! For example,

Φ2 = φ2 + 2θφψ − 2θ∗φψ∗ + θθ∗(2Fφ+ [ψ, ψ∗]) , (1.42)

and more generally

W (Φ) = W (φ) + θW ′(φ)ψ − θ∗W ′(φ)ψ∗ + θθ∗(FW ′(φ) +
1

2
W ′′(φ)[ψ, ψ∗]) , (1.43)

Therefore, we have that

δ

(∫
dtdθdθ∗W (Φ)

)
= δ

∫
dtFW =

∫
dt∂t(· · · ) = 0 , (1.44)

where we have treated W as a real superfield (i.e., products and sums of real superfields

are still real superfields)..

• Note that∫
dtdθdθ∗W (Φ) =

∫
dtdθdθ∗θθ∗(FW ′(φ) +

1

2
W ′′(φ)[ψ, ψ∗])

= −FW ′(φ)− 1

2
W ′′(φ)[ψ, ψ∗] = −FW ′(φ) +

1

2
[ψ∗, ψ]W ′′(φ) ,(1.45)

which reproduces the fermionic potential terms in (1.30). The peculiar FW ′(φ) term will

make more sense when we add kinetic terms for φ and ψ, and we will see how to reproduce

(1.30). These additional terms, when appropriately completed will be SUSY invariant on

their own as well.

• With a bit more technology under our belts next week, we will also see some interesting

applications / pay off.

3We should then define
∫
dθθθ∗ = θ∗ and

∫
dθ∗θθ∗ = −

∫
dθ∗θ∗θ = −θ.
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