1. Lecture 2: The Witten index and some applications

Review from Lecture 1:

• Last time, we started in 0 + 1 dimensions and saw that $(\mathcal{N} = 2)$ SUSY QM $\Rightarrow H \ge 0$ since

$$\left\{Q, Q^{\dagger}\right\} \equiv QQ^{\dagger} + Q^{\dagger}Q = 2H , \qquad (1.1)$$

and so

$$\langle \Omega | H | \Omega \rangle = \frac{1}{2} \left(\langle \Omega | Q Q^{\dagger} | \Omega \rangle + \langle \Omega | Q^{\dagger} Q | \Omega \rangle \right) = \frac{1}{2} \left(| Q^{\dagger} | \Omega \rangle |^{2} + | Q | \Omega \rangle |^{2} \right) \ge 0 .$$
 (1.2)

• We saw that Q and Q^{\dagger} were "fermionic" while H is bosonic.

• States with $E \neq 0$ are in "long multiplets" of SUSY since they are two dimensional (they are made up of bosonic / fermionic pairs).

• To see this, suppose we have a state with energy, $E_n \neq 0$... Can define

$$a = \frac{1}{\sqrt{2E_n}}Q \quad , \quad a^{\dagger} = \frac{1}{\sqrt{2E_n}}Q^{\dagger} \quad . \tag{1.3}$$

They satisfy the algebra

$$\{a^{\dagger}, a\} = 1$$
, $\{a, a\} = \{a^{\dagger}, a^{\dagger}\} = 0$. (1.4)

This is a 2D Clifford algebra. An irreducible representation has two states, $|\pm\rangle$ with, say, $(-1)^{F}|\pm\rangle = \pm |\pm\rangle$

$$a|-\rangle = a^{\dagger}|+\rangle = 0$$
, $a|+\rangle = |-\rangle$, $a^{\dagger}|-\rangle = |+\rangle$. (1.5)

• Moreover, zero energy states of SUSY QM are in one-to-one correspondence with states annihilated by Q and Q^{\dagger} . These may be bosonic OR fermionic. They form "short multiplets" of SUSY since they have dimension one...

• Recall that if there are no E = 0 states, then SUSY is "spontaneously broken"—the theory still has a SUSY algebra, but the ground state(s) don't preserve the supercharges. If there are E = 0 states, then SUSY is "preserved."

End review

• Call the number of bosonic zero energy states n_B^{SUSY} and the number of fermionic zero energy states n_F^{SUSY} . Witten defined an index (the "Witten index" [1]) that counts these states

$$I = \text{Tr}(-1)^F e^{-\beta H} = n_B^{SUSY} - n_F^{SUSY} , \qquad (1.6)$$

where the only contributions are from H = 0 states (and the exponential factor makes the sum well-defined). Note that (provided the theory has a discrete spectrum), the index is independent of β (we will revisit this again at the end of the lecture).

• If $I \neq 0$, SUSY is unbroken (if I = 0, then we can't say without more information).

• The index, I, will give us partial information about the vacuum structure of the theory (after all, it doesn't separately compute n_B^{SUSY} and n_F^{SUSY})... On the other hand, we will see that, since it is independent of most parameters (will make this precise), it is easily calculable: can make a deformation of the theory to a simpler regime and compute I...

• **Basic idea:** vacua have to pair up to form long multiplet. Long multiplets break up into pair of short multiplets as vary parameters....

• Hidden assumption: no new states enter the theory... i.e., the Hilbert space doesn't have new states... will see it below...

• Example: Let us consider a simple illustrative example: a 1D particle with two spin states. We take the wavefunction to be of the form (we replace $x \leftrightarrow \phi$ so as to make the connection to higher dimensions somewhat more manifest)

$$\Omega = (f_{+}(\phi) \ f_{-}(\phi))^{T} \ . \tag{1.7}$$

The first entry is the component in \mathcal{H}_+ and the second entry is the component in \mathcal{H}_- , where the Hilbert space factorizes as $\mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ and \mathcal{H}_\pm refers to the part of the Hilbert space with states of Fermion number $(-1)^F = \pm 1...$ Recall that the conjugate momentum is $\pi = -i\hbar\partial_{\phi}$ (i.e., $[\pi, \phi] = -i\hbar$). Let us define

$$Q \equiv \sigma^{-} \left(W'(\phi) + i\pi \right) , \quad Q^{\dagger} \equiv \sigma^{+} \left(W'(\phi) - i\pi \right) , \qquad (1.8)$$

where

$$\sigma^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , \quad \sigma^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} .$$
 (1.9)

As a result, we have

$$\{Q, Q^{\dagger}\} = (\pi^2 + W'^2)\mathbb{1} - \hbar W'' \sigma_3 \equiv 2H , \qquad (1.10)$$

where (up to an overall sign that amounts to a choice of convention)

$$(-1)^F = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (1.11)

Since the supercharges are acting as raising and lowering operators, it is also natural to call σ_3 fermion number.

• Note that $Q^2 = (Q^{\dagger})^2 = 0$ since $(\sigma^{\pm})^2 = 0$. Note also that the first two terms in (1.10) are the kinetic and potential energies, and the last term has the form of the interaction of a spin with a magnetic field of strength W'' (note also the relation between the potential and the magnetic field required by SUSY—they are tied together by the superpotential, W).

• The first two contributions in (1.10) are, in some sense, bosonic (they only involve ϕ and derivatives w.r.t. ϕ), whereas the last contribution, proportional to fermion number, is due to fermions (will become more manifest soon).

Exercise 2.1: Check that $[Q, H] = [Q^{\dagger}, H] = 0 = [(-1)^F, H]$. Also, check that $(-1)^F Q = -Q(-1)^F$ and $(-1)^F Q^{\dagger} = -Q^{\dagger}(-1)^F$

In order for the spectrum of H to be discrete for non-compact field space $\mathbb{R} \ni \phi$, we assume that

$$\lim_{|\phi| \to \infty} |W'(\phi)| = \infty \tag{1.12}$$

In the weak coupling / classical limit, $\hbar \to 0$, we ignore all the terms in (1.10) except $W^{\prime 2}$, and we try to minimize this term. So, at "tree level" (another way of saying classically), the number of SUSY groundstates is just the number of zeros of

$$W'(\phi) = 0$$
 . (1.13)

• The solutions to (1.13) are the classical SUSY vacua. Also, the values of ϕ for which (1.13) holds are the locations of the classical vacua: they are the places where the particle wants to live in the $\hbar \to 0$ limit...

• Since the index doesn't change under deformation of \hbar , we can trust that the Witten index computed for small \hbar gives the correct quantum Witten index... This is an example of the power of SUSY... If the Witten index in this limit is non-zero, then SUSY is preserved even quantum mechanically... If it is zero, all bets are off...

Question: Do we have an exact supersymmetric groundstate? We have that

$$Q|\Omega\rangle = 0 \quad \Rightarrow \quad (W'(\phi) + i\pi)f_+ = 0 ,$$

$$Q^{\dagger}|\Omega\rangle = 0 \quad \Rightarrow \quad (W'(\phi) - i\pi)f_- = 0 .$$
(1.14)

Note that these are first-order differential equations as opposed to second order (indication of the power of SUSY)... Solutions

$$f_{\pm} = \kappa_{\pm} e^{\mp \frac{W}{h}} \ . \tag{1.15}$$

• In light of (1.12), to make f_+ normalizable, we should (1) choose $\lim_{\phi \to \pm \infty} W(\phi) = +\infty$. However, this will make f_- blow up. On the other hand, to make f_- normalizable, we should (2) take $\lim_{\phi \to \pm \infty} W(\phi) = -\infty$, but this will make f_+ blow up. Finally, if we have $\lim_{\phi \to \infty} W(\phi) = -\lim_{\phi \to -\infty} W(\phi)$, then neither f_+ nor f_- are normalizable. In case (3) there is no SUSY ground state (i.e., SUSY is broken). On the other hand, in cases (1), (2) we have a unique SUSY vacuum.

• In the $\hbar \to 0$ limit, f_+ peaks strongly around local minima of W (i.e., solutions to (1.13) with W'' > 0) while f_- peaks strongly around local maxima of W (i.e., solutions to (1.13) with W'' < 0).

• Let us illustrate these ideas with a simple example: the SUSY simple harmonic oscillator (SHO)

$$W(\phi) = \frac{\lambda}{2}(\phi - a)^2 , \quad \lambda > 0 .$$
 (1.16)

Note: Unique classical vacuum at $\phi = a$ (since $W' = \lambda(\phi - a)$). Witten index therefore must be non-zero and actually have absolute value 1 (in our conventions will be I = +1, see below)... So expect an exact vacuum....

• Indeed, we have

$$H = \frac{1}{2} \left[\left(\pi^2 + \lambda^2 (\phi - a)^2 \right) \mathbb{1} - \hbar \lambda \sigma_3 \right] .$$
 (1.17)

Applying our general discussion, we have

$$\Omega_0 = (\kappa_+ e^{-\frac{\lambda}{2\hbar}(\phi-a)^2} \ 0)^T \ . \tag{1.18}$$

Since we are assigning $(-1)^F = +1$ to the first entry of the vector (i.e., the state is in the \mathcal{H}_+ part of the Hilbert space) we see that the Witten index I = +1 (there is one vacuum and it is bosonic).

• Make contact with what you knew before: Each component above is related to a SHO (with a shifted vacuum) energy. Therefore, know from QM, that we have solutions

$$\Omega_{n,+} = (\omega_n \ 0)^T , \quad \Omega_{n,-} = (0 \ \omega_n)^T , \qquad (1.19)$$

where $\omega_n = \langle \phi | n \rangle$ are the SHO eigenfunctions (i.e., Hermite polynomials times Gaussians... for n = 0, we get the above correctly). We have,

$$H\Omega_{n,\pm} = E_{n,\pm}\Omega_{n,\pm} , \quad E_{n,\pm} = \hbar\lambda \left(n + \frac{1}{2} \mp \frac{1}{2}\right) , \qquad (1.20)$$

where the energy shift is due to the σ_3 shift in (1.17) proportional to fermion number. Note $E_{n,+} = \hbar \lambda n$ and $E_{n,-} = \hbar \lambda (n+1)$. The groundstate is $E_{0,+}$ and is bosonic, while the excited states are paired up (bosonic and fermionic)—purely a matter of convention. Note diagram in Fig.2:

Fig. 2. From Ken Intriligator's notes: x = + and 0 = -...

In particular, we have

$$\operatorname{Tr}(-1)^F e^{-\beta H} = +1$$
, (1.21)

Notice that the vanishing energy is an example of the cancellation we see in SUSY observables... This phenomenon is a baby version of the cancellation between fermionic and bosonic contributions to the Higgs mass alluded to in lecture 1 (again will become clearer after some conceptual / notational cleanup in later lectures).

• Note that if we then continue to $\lambda < 0$, the Witten index flips sign since the normalizable solution is now $f_{-} = \kappa_{-} e^{\frac{\lambda}{2\hbar}(\phi-a)^2} \dots$