
1. Lecture 11

• Let us briefly review what we saw in the last lecture. We studied the interacting WZ

model gotten by deforming the free chiral superfield by the relevant perturbations

δW = mΦ2 + λΦ3 . (1.1)

When λ 6= 0, we have interactions (this term is also relevant since R0(λ) = 1
2

= ∆(λ)).

Using selection rules under (broken) symmetries we constrained the renormalization of this

theory.

• For both m,λ 6= 0, there is no U(1)R symmetry and no U(1) flavor symmetry. However,

we can promote these broken symmetries to spurious symmetries by allowing the couplings

to transform. Doing so, we have J (φ) = J (ψα) = J (F ) = +1 with J (m) = −2 and

J (λ) = −3. We also have R(φ) = 2
3
, R(ψ) = −1

3
, and R(F ) = −4

3
with R(m) = 2

3
and

R(λ) = 0.

• Therefore, the quantum superpotential must have the form

W = mΦ2 · f
(
λΦ

m

)
, (1.2)

where J (λφ/m) = J (λ) + J (φ)− J (m) = −3 + 1 + 2 = 0 and R(λφ/m) = R(λ) +R(φ)−
R(m) = 0 + 2

3
− 2

3
= 0 while J (mΦ2) = 2 and R(mΦ2) = 2.

• Denote u = λΦ/m. By studying the u→ 0 and u→∞ limits and by using the symmetries

at |u| =∞, we argued that quantum corrections / renormalization do not change W , so we

have

W = mΦ2 + λΦ3 , (1.3)

in the full quantum theory as well.

• Note, however, that the Kähler potential is in general renormalized, although the Kähler

metric remains positive semi definite, gφφ̄ = ∂φ∂̄φ̄K > 0 since kinetic terms still need to

have the correct sign.

• Let us study this theory in more detail. To that end, we can find the SUSY vacua by

solving the F -term EOM and setting the result to zero

F̄ = −gXX̄(2mφ+ 3λφ2) = 0 . (1.4)
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Since gXX̄ > 0, we have that

2mφ+ 3λφ2 = 0 . (1.5)

The solutions describe the vacua of the theory

〈φ〉 = −2m

3λ
, 〈φ〉 = 0 . (1.6)

If both m,λ 6= 0, these are two separate vacua. The theory is trivial in each of these vacua

(the chiral multiplet has a mass m in both vacua). If we set λ = 0, the first vacuum goes

off to infinity and we have just the vacuum at 〈φ〉 = 0. If we set m = 0, we have a (double)

vacuum at 〈φ〉 = 0... This is an interacting SCFT with RIR
0 (φ) = 2/3 = ∆(φ)... In both

cases, the moduli space (space of vacua) is just a point... We can integrate out the field by

setting it to one of the values in (1.6).

• As we saw last time, we can also apply identical non-renormalization arguments to theories

with non-trivial moduli spaces... For example, consider the following

L = −
∫
d4θ(X̄X + Ȳ Y + Z̄Z) +

(∫
d2θλXY Z + h.c.

)
. (1.7)

We have the following set of vacua

F̄X = −gXX̄λY Z = 0 , F̄Y = −gY Ȳ λXZ = 0 , F̄Z = −gZZ̄λXY = 0 . (1.8)

Note that gXX̄ = gY Ȳ = gZZ̄ > 0 is a non-trivial function of λλ̄ (off diagonal components of

the metric vanish by the U(1)2 × S3 flavor symmetry of the theory... We have the following

three solutions

〈X〉 = 〈Y 〉 = 0 , 〈Z〉 ∈ C ,

〈X〉 = 〈Z〉 = 0 , 〈Y 〉 ∈ C ,

〈Y 〉 = 〈Z〉 = 0 , 〈X〉 ∈ C . (1.9)

These are three “branches...” Each parameterized by vevs for X, Y , and Z... They meet at

the point where 〈X〉 = 〈Y 〉 = 〈Z〉 = 0 is an interacting SCFT. This is called the “origin

of the moduli space.” On each of these branches, we have massless modes... As we will

see, these are related to spontaneously broken symmetries (i.e., symmetries preserved by

the theory but broken by the vacuum)... These are called Goldstone bosons (and their

super-partners)... For example, on each branch, we break a U(1)R under which

R(X) = R(Y ) = R(Z) = 2
3
, so we have a multiplet corresponding to this broken

generator (note that this is the superconformal U(1)R since it is invariant under

the S3 that permutes the fields)...
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• But we can make this more precise. There is a theorem governing such things: it is called

Goldstone’s theorem.... How do we see this? Suppose we have an operator, O, charged

under some global symmetry (it may be flavor or R-symmetry.... note that this reasoning

is more general than SUSY) such that 〈O〉 = 〈0|O|0〉 6= 0. In this case

〈0|[Q,O]|0〉 = C 6= 0 . (1.10)

We can re-write this as (using a sum over a complete set of states)

C =
∑
n

∫
d2x
(
〈0|j0(x)|n〉〈n|O|0〉 − 〈0|O|n〉〈n|j0(x)|0〉

)
=

∑
n

(2π)2δ2(p)
(
〈0|j0(0)|n〉〈n|O|0〉e−iωnt − 〈0|O|n〉〈n|j0(0)|0〉eiωnt

)
. (1.11)

Currents are still conserved even when the symmetry is spontaneously broken since this is

just a choice of vacuum and ∂µj
µ = 0 is an operator equation. Therefore

∂0C =
∑
n

(2π)2δ2(p)
(
− iωn〈0|j0(0)|n〉〈n|O|0〉e−iωnt − iωn〈0|O|n〉〈n|j0(0)|0〉eiωnt

)
.(1.12)

Therefore we see that the states that have non-zero matrix elements (these must exist) have

ωn = 0. This is what we expect for a free massless particle (ωn = p = 0).

• Now, let us suppose we move onto the branch with 〈X〉 6= 0 (and all other vevs vanishing)...

Since X is charged under, e.g., a U(1)R symmetry with R(X) = 2/3, we expect a goldstone

boson in the IR. Actually, we expect a Goldstone boson in a supermultiplet... These

multiplets will be free in the IR... Let us set 〈X〉 = x. Then, we have X = 〈X〉+ δX →
〈X〉+X (where, by abuse of notation, we have renamed the fluctuation about the vacuum

X as well)

W = λxY Z + λXY Z . (1.13)

The result is that the Y and Z multiplets acquire a mass λx. At energies below this scale

we are left with a theory of the X superfield. We can integrate the massive Y and Z fields

F̄Y = −gY Ȳ (λxZ + λXZ) = 0 , F̄Z = −gZZ̄(λxY + λXY ) = 0 . (1.14)

From these equations, we conclude

λxZ + λXZ = λxY + λXY = 0 . (1.15)

Since the Y and Z fields are massive, we integrate them out and plug the above EOM back

into the superpotential yields

W = 0 . (1.16)
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In other words, in the deep IR, we see that the theory consists of a single free chiral

multiplet, X. This is the goldstone multiplet in question. Note that this branch of the

moduli space has complex dimension 1 since x ∈ C is unconstrained.

• We have a similar situation on the other branches (i.e., on the 〈Y 〉 6= 0 branch, Y is the

Goldstone multiplet while X and Z are massive and get integrated out... on the 〈Z〉 6= 0

branch, Z is the Goldstone multiplet while X and Y are massive and get integrated out...)...

At the origin we have the interacting SCFT with ∆(X) = ∆(Y ) = ∆(Z) = 2
3
... See the

attached figure...

Fig. 1: The moduli space of the XY Z model.

• Now that we have a better picture of the IR behavior of the XYZ model, let us turn to

the IR behavior of SQED.

• Recall that SQED has the form

LSQED = −
∫
d4θ

Nf∑
i=1

(q̄ie2V qi + ¯̃qie−2V q̃i)−
1

g2

∫
d2θd2θ̄Σ2 =

1

g2

(1

2
D2 − 1

4
F µνFµν

− ∂µσ∂µσ + iλγµ∂µλ̄
)

+
∑
i

(|Fi|2 −Dµρ̄
iDµρi + iψiγ

µDµψ̄
i + |F̃i|2 −Dµ

¯̃ρiDµρ̃i

+ iψ̃iγ
µDµ

¯̃ψi − σ2(|ρi|2 + |ρ̃i|2)−D(|ρi|2 − |ρ̃i|2)− iσ(ψiψ̄
i − ψ̃i ¯̃ψi

−
√

2i(λψiρ̄
i − λψ̃i ¯̃ρi)−

√
2i(λ̄ψ̄iρi − λ̄ ¯̃ψiρ̃i)) . (1.17)

In what follows, we will specialize to the case Nf = 1... Recall that this theory has a

U(1)× U(1) flavor symmetry (the first factor is a topological symmetry under which the

scalar dual to the photon shifts... the second factor is the U(1) flavor symmetry that rotates

the q and q̃ mutliplets all by the same phase).
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• Note that there are zero energy solutions gotten by setting the matter fields to have

vanishing vevs, 〈ρi〉 = 〈ρ̃i〉 = 0. We can also set 〈σ〉 6= 0. This clearly gives masses to all

the matter fields while leading to

1

g2
D − |ρ|2 + |ρ̃|2 = 0 , D = 0 , F = F̃ = 0 . (1.18)

This is what we want: descendant fields like D and F cannot acquire vevs in a SUSY

vacuum (since they are Q or Q̄ of something, this would imply that the vacuum is not

annihilated by the SUSY charges, i.e., SUSY is spontaneously broken). This procedure

leaves over the vector multiplet as a massless degree of freedom... We can think of this

multiplet as a Goldstone multiplet for the topological symmetry... Recall that there is a

dual scalar to the photon, ϕ, that is in a multiplet with σ... This is called the “Coulomb

branch” of the theory... The reason is that there is a free U(1) gauge field left over in the

IR...

• Note that we also may have branches where we give the matter fields vevs... Indeed, we

need only choose

〈σ〉 = 0 , |〈ρ〉|2 = |〈ρ̃〉|2 . (1.19)

• How should we understand this branch? Via the Higgs mechanism... Recall that a photon

has two degrees of freedom in 4D (naively it has four, but recall that A0 does not have

a kinetic term and so is determined in terms of the other d.o.f.’s... also, we can absorb

another d.o.f. via gauge transformations) and 1 degree of freedom in 3D (we lose degrees of

freedom in the same way... and we start naively from 3 d.o.f.’s)...

• Consider the following non-SUSY Lagrangian with a complex scalar, φ, charged under a

U(1) gauge symmetry

L = −Dµφ̄D
µφ = −(∂µ − iqAµ)φ̄(∂µ + iqAµ)φ . (1.20)

Under a U(1) gauge transformation, φ→ e−iqΛφ and Aµ → Aµ + ∂µΛ... Gauge symmetry

prevents the existence of a mass for the photon since m2

2
AµAµ is not gauge invariant...

When we take 〈φ〉 = v 6= 0, however we do get a mass... Take φ = (v + ρ)eiθ. We then have

L ⊃ q2|v|2AµAµ . (1.21)

The reason is that φ transforms in such a way that it maintains gauge invariance...

5



• What of the SUSY example? Well, we can try to turn on a vev 〈ρ〉 = v 6= 0. The D-term

equations force us then to set 〈ρ̃〉 = veiθ as well (for simplicity, let’s set θ = 0)... This is

called the “Higgs branch”...

• What do we expect on general grounds? We know there is a U(1) flavor symmetry that

rotates all the squark / matter superfields by the same phase... So Goldstone’s theorem

guarantees a multiplet of Goldstone bosons... Also, we know that if the vector field gets a

mass, then so too must the σ field and the gauginos, λ̄. This multiplet has the same number

of d.o.f.’s as a chiral multiplet... So, we need to marry it with another chiral multiplet...

This should leave over a chiral multiplet comprising the U(1) Goldstone multiplet...

• To see this more explicitly, note that substituting the vevs into the above Lagrangian

yields the following mass terms

LSQED ⊃
√

2iv̄λ(ψ − ψ̃) (1.22)

It is easy to see this is the only mass term involving λ... So, the gauge multiplet must get

massive by eating the q− q̃ chiral multiplet... Note that the other linear combination ψ+ ψ̃

is massless... This is part of the q + q̃ Goldstone multiplet... Note that it is natural for this

multiplet to contain opposite gauge charges: this symmetry is broken. On the other hand,

note that both q and q̃ have the same charge under the global U(1) symmetry...

• Note here that there are no mixed branches: we cannot simultaneously turn on vevs

for σ and the matter field primaries! That is to say: we have a 1 complex dimensional

moduli space with different branches: the Coulomb and Higgs branches... The absence of

mixed branches is related to what we saw in the N = (2, 2) SQM dimensional reduction

of this theory: we couldn’t turn on real masses and holomorphic masses at the same

time... Thinking of these objects as dynamical fields would have corresponded to going onto

Coulomb and Higgs branches at the same time...

• Let us analyze the Coulomb branch more carefully... As we discussed in lecture 8, the

scalar ϕ dual to the 3D photon is compact... It lives on a circle of length 2πg2, where

g is the gauge coupling... Now, as long as there is charged matter, this coupling—as in

4D— runs... However, we have seen that a vev 〈σ〉 = v 6= 0 gives mass to the matter fields.

Below this scale the coupling therefore does not run... In particular, we have

1

g2
L

=
1

g2
0

+
1

〈|σ|〉
. (1.23)
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For large 〈σ〉, we have that gL ∼ g0... For small vev, however, we have g → 0... In particular,

the Coulomb branch then shrinks to zero size... It opens up again when we switch signs of

〈σ〉... Therefore, we really have two Coulomb branches and a higgs branch..

• This has exactly the structure of the XY Z moduli space... Also, the symmetries match:

they are both U(1)× U(1)... That’s because these theories are actually dual–ie.., the same

in the IR!!!

• There are many other checks of this idea... For example, although our methods don’t

let us select the correct superconformal R symmetry for the IR SQED theory (we can

only say that, based on charge conjugation invariance, RIR
0 (q) = RIR

0 (q̃)...)... More modern

techniques do, however, allow us to do this. We can check that RIR
0 (q) = RIR

0 (q̃) = 1/3,

so we can get matches of gauge invariant operators as well. For example, M = qq̃ can be

mapped onto one of X, Y, Z (there are other operators that get mapped onto the remaining

fields).... This is the simplest example of duality!!!

• While we have reached the end of the course, it’s clear there is much, much more to

explore... I hope to have given you just a taste of the beauty behind SUSY and formal

aspects of QFT.
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