
1. Lecture 10

• Let us briefly review what we saw in the last lecture. We studied the structure of theories

with conformal symmetry and SUSY, and saw that we necessarily got superconformal

symmetry (so called superconformal field theories or SCFTs). One important aspect of

these theories was that they had a superconformal R symmetry, R0. As we will see, this is

a genuine symmetry as opposed to an automorphism.

• Under this symmetry, chiral operators satisfy the following

R0(O) = ∆(O) , [Q̄α,O] = 0 . (1.1)

In the free chiral multiplet example, R0(φ) = 1
2
... We can define composite chiral operators

without the usual subtraction of singularities, i.e., limx→yO1(x)O2(y) = O1O2(y), and

dimensions of operators just add.

• Comment: Note that the superconformal R symmetry is a genuine symmetry of the

theory as opposed to being just an automorphism of the algebra. For example, we could

consider turning on

W = mΦ2 + λΦ3 . (1.2)

This theory doesn’t have an R-symmetry (although the SUSY algebra has a U(1)R au-

tomorphism)... It can’t because the integration measure d2θ has R = −2, and we can’t

simultaneously have R(φ) = 1 and R(φ) = 2/3. It also doesn’t have a superconformal

R-symmetry...

• The above theory therefore cannot be both supersymmetric and conformal (the corre-

sponding algebra does not close if we include both SUSY and conformal generators). Indeed,

it is not conformal since W has scaling dimension two and so m has scaling dimension 1

and λ has scaling dimension 1/2. We will see soon using some fancy arguments that it is

necessarily SUSY (i.e., has a SUSY ground state even in the quantum theory).

• Let us now understand non-conformal theories better. The simplest thing to do is to

start with a free chiral multiplet and turn on

δW = mΦ2 . (1.3)

This is a mass term. It also breaks the superconformal R symmetry since R0(Φ2) = 1 6= 2

(i.e., R0(m) = 1). There is, however, a different R-symmetry, R 1
2

(where R 1
2
(Φ) = 1).
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• What does the propagator look like in this theory? Say we are in Euclidean space. Then,

we have (up to an overall factor)

〈φ(k)φ(−k)〉 =
1

k2 +m2
(1.4)

Clearly, in the limit k � m, we have that

〈φ(k)φ(−k)〉 ∼ 1

k2
. (1.5)

This limit is called the UV (ultraviolet) or high energy / momentum limit. In this limit,

the theory looks like a free massless scalar. On the other hand, for k � m, we are in the

IR (infrared) or low energy / momentum limit. In this limit, we have that

〈φ(k)φ(−k)〉 ∼ 1

m2
, (1.6)

and there is no energy to excite modes of the field...

• It is useful to Fourier transform the above to position space. In particular, we have

〈φ(x)φ(y)〉, and, for |x− y| � m (the UV or short-distance limit), we have

〈φ(x)φ(y)〉 =
1

|x− y|
, |x− y| � m−1 . (1.7)

On the other hand, in the IR (long-distance limit), we have

〈φ(x)φ(y)〉 = δ3(x− y) , |x− y| � m−1 . (1.8)

The first limit is the CFT limit of the free scalar, while the second limit is clearly trivial

(there is no propagation of fields...)... The theory is completely massive... In particular, in

this regime, m−1 provides a short-distance cut-off, so we never should consider the divergence

when x→ y (this divergence is an example of something called a local or “contact” term—it

is related to the UV definition of the theory) Exercise: Perform the Fourier transform of

the momentum-space 2-pt function and check that it interpolates between these two limits.

• Therefore, our theory interpolates between an SCFT in the UV and a trivial theory in

the IR.

• This is common in QFT: in the UV we start with something that has more degrees of

freedom, and in the IR we end up with something with fewer degrees of freedom. In 2, 3,

and 4 dimensions there are well-known theorems that formalize this idea [1].
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• To codify this discussion, we introduce an energy momentum scale, µ—this is the scale

at which we “observe” the theory... It is called the “RG scale”... When µ→ 0 we go to

the trivial theory and when µ→∞ we get the UV CFT... To see the relative importance

of couplings in the IR and UV, we define a dimensionless coupling

m̂ =
m

µ
. (1.9)

The importance of this coupling with scale is measured by the beta function

βm ≡ µ
∂m̂

∂µ
= −m̂ . (1.10)

This means that as µ→ 0, m̂→∞ while for µ→∞, m̂→ 0... This is what we expect: in

the UV limit, the masses are not important... The opposite is true in the IR.

• At scales µ� m, we cannot excite quanta of the φ field (and its SUSY friends). Therefore,

we can “integrate out” this field (this terminology comes from the Wilsonian idea of the

RG: we take the path integral and integrate out modes of the fields above the RG scale...

since the field has mass above the RG scale, we should integrate out all of its modes) by

using its EOM to remove it from the theory. In particular, we can perform the F EOM

from

L ⊃ |F |2 + 2Fmφ+ 2F̄ m̄φ̄ , (1.11)

and obtain

F̄ = −2φ , (1.12)

so the condition of a SUSY vacuum is then that

0 = F̄ = −2mφ . (1.13)

We think of this as an operator equation that sets φ and all of its partners to zero. In

particular, the theory in the IR is just the empty theory.

• Note also, in case it wasn’t clear, similar comments apply to the fermion. So, our RG flow

is a flow between the free massless chiral multiplet SCFT and the trivial theory in the IR.

• This discussion shows that the set of ideas behind renormalization really have nothing to

do in general with computing loop diagrams. In some cases, we may need to compute loop

diagrams in order to compute beta functions, but the idea and utility of the RG is much

greater than these particular applications.
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• In today’s lecture, we would like to consider the more interesting deformation of the free

theory

δW = mΦ2 + λΦ3 . (1.14)

When λ 6= 0, note that we have interactions (this term is also relevant since R0(λ) = 1
2

=

∆(λ)). For example, we have

L ⊃ −|W ′|2 +
1

2
W ′′ψ2 − 1

2
W ′′ψ̄2 ⊃ −9|λ|2|φ|4 − 6mλ̄φφ̄2 − 6m̄λφ̄φ2 + 3λψ2φ− 3λ̄ψ̄2φ̄

+ mψ2 − m̄ψ̄2 . (1.15)

• To understand this theory and take quantum corrections into account, let’s first step back

and analyze a more general theory of chiral superfields, Φi

L = −
∫
d4θK(Φi, Φ̄i) +

(∫
d2θW (Φi) + h.c.

)
. (1.16)

This is the most general two-derivative Lagrangian we can write. These are called (3D)

Wess-Zumino (WZ) models (they have no gauge interactions, although we will see this

distinction is, in some sense, a mirage). The second term is a holomorphic function of the

chiral superfields and, as we know, is called the superpotential. The first term is a real

function of Φi and Φ̄i called the “Kähler potential.” It gives rise to a metric (called the

Kähler metric)

gij̄(φk, φ̄k) = ∂i∂j̄K(φk, φ̄k) , (1.17)

where differentiation is with respect to the fields. This metric is invariant under a set of

transformations called Kähler transformations K(φi, φ̄i) → K + χ(φi) + χ̄(φ̄i). Note that

since we integrate these deformations over all of superspace, they are total derivatives and

therefore do not affect the theory.

• Unitarity of the theory (right sign kinetic term) requires that gij̄ ≥ 0 (with vanishing

norm only for a zero vector). We have

L = gij̄

(
−∂µφi∂µφ̄j + F iF̄ j̄ + iψiγµ∂µψ̄

j̄
)

+
1

4
Rij̄kl̄ψ

iψkψ̄j̄ψ̄ l̄ + F iWi + F̄ īW̄ī

+
1

2
Wijψ

iψj − 1

2
W̄īj̄ψ̄

īψ̄j̄ . (1.18)

The F -term equations are

gij̄F̄
j̄ +Wi = 0 ⇒ F̄ j̄ = −gij̄Wi . (1.19)
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So we get

L = gij̄

(
−∂µφi∂µφ̄j + iψiγµ∂µψ̄

j̄
)

+
1

4
Rij̄kl̄ψ

iψkψ̄j̄ψ̄ l̄ − gij̄W iW̄ j̄

+
1

2
Wijψ

iψj − 1

2
W̄īj̄ψ̄

īψ̄j̄ . (1.20)

The classical SUSY vacua are at W i = 0 (since gij̄ ≥ 0).

• Recall that in SQM, we had classical SUSY vacua described by the vanishing of the

auxiliary fields

F̄ j̄ = −gij̄Wi = 0 , (1.21)

as well. However, non-perturbative tunneling effects (via instantons) could lift these vacua

and make them non-SUSY in the quantum theory [Draw V = (W ′)2 with two minima].

As you know, tunneling events are exponentially suppressed, e−
c
~ .

• In QFT, in the infinite volume limit, tunneling between vacua is completely suppressed,

e−
c
~Vol(Space) → 0 as Vol(Space)→∞...

Fig. 1: The generation of a φ4 term in Yukawa theory.

• However, to know which vacua we have (a low energy question), we need to understand

how the theory behaves at low energies. In general in QFT this is a difficult thing to do.

The main reason is renormalization. We define the theory in the UV. Even if we start with

a set of interactions where the theory is defined in the UV, we get divergences and need to

introduce new interaction terms that cancel these interactions. For example, in (non-SUSY)

Yukawa theory, say in 4D, we have the situation in Fig. 1, where we start with L ⊃ hψψφ

(I am using two-component spinors) and generate λφ4. Since this term is log-divergent, we

add a term to the action that cancels this divergence (so that the low-energy theory is

independent of the cut-off).
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• This term is called a “counterterm,” and is a function of µ in our way of performing

renormalization (this is also the scale at which we observe the theory). Differentiating the

coupling with respect to log µ gives us the beta function. The idea here is to add terms

to the action that keep the low-energy theory fixed. In particular, we find something like

βλ = 1
16π2 (3λ2 + 8λh2 − 48h4) + · · · ... This is the Wilsonian approach to the RG...

• What happens with SUSY? Well, let’s go back to the theories of chiral superfields, Φi

L = −
∫
d4θΦ̄Φ +

(∫
d2θ(mΦ2 + λΦ3) + h.c.

)
. (1.22)

For simplicity let us first set m = 0.

• Then, δW = λΦ3, and, although the theory is non-conformal (R0(Φ3) = 3
2
, so R0(λ) = 1

2
),

it has an R symmetry, R = R 1
6

= R0 + 1
6
J (recall J (φ) = J (ψ) = J (F ) = +1) under

which R(φ) = 2
3
, R(ψ) = −1

3
, R(F ) = −4

3
.

• Let us now think of λ as a chiral superfield spurion / background field that transforms

under J . (Note: this is the promised higher-dimensional version of the discussion of

background fields we first encountered in (2, 2) Berry phase in 0 + 1 dimensions.) Then, we

need J (λ) = −3 to make this a “symmetry” (we also have R(λ) = 0). What kinds of terms

can appear in the superpotential after turning on this coupling? Well, they must be of the

form ypΦq ⊂ W . Indeed, SUSY doesn’t allow ȳ or Φ̄ to appear. Now, invariance under

the R symmetry requires q = 3. On the other hand, invariance under J requires p = 1.

Therefore, we conclude that W is not renormalized at all! Similar logic holds if we had

taken δW = λkΦ
k (note: with no summation over k). This statement holds perturbatively

(i.e., for polynomials in y) and non-perturbatively in y (i.e., non-polynomially in y)!

• Note, however, that the Kähler potential can get renormalized since both y and ȳ are

allowed to enter (Exercise: although not at one loop! Mention Feynman diagrams...). But,

since we started with a unitary theory (probabilities are conserved), we must end up with

a unitary theory. Therefore, we have a unique SUSY vacuum (we say there is NO moduli

space) at F̄ = −3g11̄λX2 = 0 (where g11̄ > 0 is the Kähler metric and depends on y, ȳ), so

〈X〉 = 0.... Note that X is not massive, so we do not integrate it out!

• Instead, since there is no mass, it is reasonable to believe there is an SCFT in the IR

(at zero energy, we must either get a massive theory or a theory without scale...). What

is the scaling dimension of Φ in the IR? Well, we saw in our previous lecture that there

must be a superconformal R symmetry in such an SCFT, R0. If we assume there are no
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accidental flavor symmetries in the IR (this is what’s usually done unless we violate certain

unitarity bounds... we won’t have time to get to this in our module, so we will always

assume unitarity bounds are not violated), we must have

RIR
0 (φ) =

2

3
= ∆IR(φ) . (1.23)

Note

∆UV −∆IR(φ) =
1

2
− 2

3
= −1

6
(1.24)

In particular, the scaling dimension of φ increases by 1/6! This implies we have strong

quantum corrections in the IR!!! Try to compute this from Feynman diagrams, it is

impossible. Note that this cannot be a free SCFT. Such a theory necessarily has free chiral

superfields (free vectors are actually not conformal in 3D!!!). In particular, in a free theory,

scaling dimensions of all operators must be integer or half-integer...

• Note that you may also have worried about higher-derivative terms, e.g.,
∫
d4θD̄Φ̄DΦ...

However, these terms necessarily come with more derivatives, so they vanish in the limit of

zero momentum (i.e., they are always irrelevant in the IR...).

• Next let us consider turning m 6= 0 as well so that δW = mΦ2 + λΦ3... Now we have a

spurious R symmetry under which R(m) = 2
3

(the rest of the fields still transform in the

original way and R(λ) = 0) and a spurious J symmetry under which J (m) = −2.

• Therefore, the quantum superpotential must have the form

W = mΦ2 · f
(
λΦ

m

)
, (1.25)

where J (λφ/m) = J (λ) + J (φ)− J (m) = −3 + 1 + 2 = 0 and R(λφ/m) = R(λ) +R(φ)−
R(m) = 0 + 2

3
− 2

3
= 0 while J (mΦ2) = 2 and R(mΦ2) = 2.

• Denote u = λΦ/m.... In particular, holomorphy of the superpotential means f is a

holomorphic function of u. Clearly at λ = 0 with m 6= 0, u = 0. We know that if the

interaction is turned off, then

f(0) = 1 . (1.26)

we also saw that when m→ 0 with λ 6= 0, we have

f(|u| → ∞) = u . (1.27)

What about higher-order terms? For example, a Φ4 term would look like λ2

m
Φ4 ⊂ W .

However, it is easy to check that loops that can contribute to, say, φ2ψ2 start at least at

order λ4 (really λ3λ∗)....
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Fig. 2: The generation of a φ2ψ2 term (here y → λ) starts at order too high in λ.

• Therefore, there are no such terms in W ... Similarly for higher orders as well... This fixes

the superpotential... Even including non-perturbative effects. For example

e−
1
u2 + 1 + u , (1.28)

has the correct behavior as u→∞ and as u→ 0 if u ∈ R... However, if u ∈ iR, then we

get the wrong behavior as u→ 0... The correct answer therefore is

f(u) = 1 + u . (1.29)

The superpotential is not renormalized.

• The above non-renormalization arguments extend quite generally to WZ models and also

to SQED... There is renormalization, but it is through the Kähler potential (note that the

gauge kinetic terms, which do get renormalized, can always be written as Kähler potential

terms...).

• We can also have interesting examples with moduli spaces (i.e., spaces of vacua). For

example, consider the following

L = −
∫
d4θ(X̄X + Ȳ Y + Z̄Z) +

(∫
d2θλXY Z + h.c.

)
. (1.30)

We have the following set of vacua

F̄X = −λY Z = 0 , F̄Y = −λXZ = 0 , F̄Z = −λXY = 0 . (1.31)

This has the following three solutions

〈X〉 = 〈Y 〉 = 0 , 〈Z〉 ∈ C ,
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〈X〉 = 〈Z〉 = 0 , 〈Y 〉 ∈ C ,

〈Y 〉 = 〈Z〉 = 0 , 〈X〉 ∈ C . (1.32)

These are three “branches...” Each parameterized by vevs for X, Y , and Z... They meet

at the point where 〈X〉 = 〈Y 〉 = 〈Z〉 = 0 is an interacting SCFT. This is called the

“origin of the moduli space.” On each of these branches, we have massless modes... As we

will see, these are related to spontaneously broken symmetries (i.e., symmetries preserved

by the theory but broken by the vacuum)... These are called Goldstone bosons (and

their super-partners)... For example, on each branch, we break a U(1)R under which

R(X) = R(Y ) = R(Z) = 2
3
, so we have a multiplet corresponding to this broken generator...

• Next week we will delve into Goldstone’s theorem, the super Higgs mechanism, and

SQED’s moduli space...
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