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1 Hamiltonian mechanics

1.1 Example: Particle in a potential V(7)
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Hamilton’s equations:
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In particular, for the free particle (V/ ), 7 is cyclic = ;5': 0 = p'is constant.

1.2 Example: Particle in a central potential in polar coordinates
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and for ¢:
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1.3 Time evolution in Hamiltonian mechanics

A= A(q,p,t): Some physical quantity of the system.
How does it evolve?
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Using Hamilton’s equations this is
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If we define the Poisson bracket by

(x, vy = OX OV _ox oy
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then
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1.4 Aside: Poisson brackets and quantum mechanics

There is a special {, }, namely:
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The canonical commutation relation of quantum mechanics is

&, 5 = &p — pi = ih
(In the basis where the operator & means multiplying the wavefunction by x, while p is nothing but the
derivative: p = fih%.)

The similarity between the Poisson bracket and the commutator suggests that we can go from classical
mechanics to quantum mechanics by replacing

1. ~ -
XYl —[X,Y
{X, Y} (X, V]
where the hatted quantities are operators.

Using this “dictionary” (whenever it works), the time evolution of a quantum mechanical operator A

should be

b 1 ~ 4 3121
A= Lixom+ 24
Al A+ 5

This is the so-called Heisenberg equation in quantum mechanics.

1.5 Properties of Poisson brackets
{Av B} = _{B7 A}
{Av A} =0

{4,¢c} =0

if ¢ =const.

(iv)

v)
{A, BC} = B{A, C} + {A, B}C

(vi) The Jacobi identity
{A’ {Bv C}} + {Ba {Cv A}} + {07 {Av B}} =0



1.6 A consequence of the Jacobi identity

If [} = I; = 0, i.e. they are both conserved, then {I1, Is} is also conserved (Poisson’s theorem). This way
we can generate a new conserved quantity (unless it is just a combination of the old I; and I5).

Proof: P 9
%{117 IQ} - {{11512}7H} + E{IlaIQ}

using the Jacobi identity we get

=L, H}, L}y — {H, L}, I} + {%’12} + {11, %}
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Q.E.D.

1.7 A charged particle in an electromagnetic field

The Lagrangian of a particle of mass m and charge e in an external electromagnetic field is

with

V(F,7) = ep —er- A

where ¢(7,t) and /_1'(7_", t) are the scalar and vector potentials related to electromagnetic fields E and B via

E=-0A-V¢

1

-

B=VxA

(This is our first encounter with a velocity-dependent potential. In this case, force is not given by —%—Z; see

Goldstein §1.5)

We prove the above by showing that the Euler-Lagrange equation derived from the above Lagrangian is
the familiar

mix; = el; + 6(7;“’>< .é)l

where 1 = 1,2,3. Note that we have set ¢ = 1.



Proof:

1 . -
L= -mi? —ep+er-A

2
Pi= 5 mi; + eA;
L
aaxi = 7€vi¢ -+ ei'jViAj

P = mi; + G%Ai(ﬁ t) =mi; + 6(615147; + Z‘JVJAZ)

So the Euler-Lagrange equations (p; = %) give

mxl -+ e(atAi + IJVJAZ) = 76vi¢ -+ e;thiAj

mi; = e (—0i4; — Vi¢) +ex;(V;A; — V,;A;)
—_———
E;

But

—

(?X B')l = (FX (6 X /Y))l = €ijk.ﬁj(v X A‘)k - €i‘jkj7j€klmvl14m
Using the identity: egij€rim = 0i10jm — dimj we get

(6il6jm - 5im6jl)j:jvlf4m = .177 (ViAj - V7Al)

Therefore,
mi; = eF; + e(F x B);

Q.E.D.

1.8 Remark 1: Lorentz invariance

The interaction term

Sint:—/dtV:—/dt(egb—ef/_f)

can be written as

Sint = — /d4ﬂc(p¢> —J-A)= /d“x JrA,

where

These are four-vectors of relativity. p is the charge density and J is the current density.



In the above point-particle case:

p = ed® (7 — (1))

J = erd®) (7 — 7(t))

where the particle of charge e is moving along the trajectory = 7(t).

JHA, is a scalar (invariant under Lorentz transformations), so the action is also Lorentz invariant.

1.9 Remark 2: “gauge invariance”

We have previously seen that the Euler-Lagrange equations are unchanged if the Lagrangian is changed by
a total derivative.

We have

1 .
L= 57’7’),7:‘2 + Lint

Lint = —¢p+ er- A

Let us consider the transformation
Ay — Ay +0,A

Here we used the notation 0, = (0, ﬁ) and = 0,1,2,3. Here A = A(7,¢t) is an arbitrary function. The
above transformation means

¢ — ¢— A
and
A’—>/T+§A

It is a gauge transformation.

R d, ..
Ling — Ll = Ling + €A + e - VA = Ling + eaA(r(t), t)
The second term is a total derivative and thus it will not affect the Euler-Lagrange equations. Hence, the
transformation is a symmetry of the theory' and this is called gauge invariance.

e One can understand this also by noting that the physical fields E,E do not change under gauge
transformations:
E=-3A-V¢ — —9,(A+VA)-V(p—A) =E
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and

11t really is not a physical symmetry, but a redundancy in the description of the physical degrees of freedom.



e There are infinitely many different ways to choose (¢, A) that give the same E, B. This arbitrariness
can be removed by “fixing the gauge”, i.e. by imposing some conditions to be satisfied by ¢ and A.

For instance the Coulomb (or radiation) gauge is:

—

V-A=0
Can we do further gauge transformations while staying in this gauge?
0=V-A =V -(A+VA)=V3A=0

If we require that A — 0 as |F] — oo, the only solution is A = 0. Thus, the Coulomb gauge choice completely
fixes the gauge.

1.10 Hamiltonian of a charged particle
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LzﬁmfgfeqSJreﬁA

pi = 8.L = mi; + eA; = T = l(pi —e4,;)
0z, m
H =pi; — L :p‘l(pl —eA;) — lmi(p, — eA4)2 —ep+ ei(p» —eAA;
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e The Hamiltonian of a charged particle is obtained by

(i) Perform “minimal substitution”:
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(ii) Add the potentia lterm, e¢



1.11 A peek at quantum mechanics

What is the Schroedinger equation for a particle of mass m and charge e in an electromagnetic field?

1, -
Hassical = T(p - eA)Q +e¢
m

In quantum mechanics, P’ — —ihV. So

-,

(7 — eA)? = (=ihV — eA)? = —h*V? 4 2 A% 4 ihe(A-V + V- A) = —h?V? + 2 A2 4 2ilieA -V + ihe(V - A)
If we go to Coulomb gauge, then V-A=0. So in this gauge the Schroedinger equation is

2 2 .
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