
SPA5304 Physical Dynamics Lecture 26-27

David Vegh

13 March 2019

1 Hamiltonian mechanics

1.1 Example: Particle in a potential V (~r)

L =
m

2
~̇r2 − V (~r)

~p =
∂L

∂~̇r
= m~̇r

We need to express ~̇r = ~̇r(~r, ~p, t). We get

~̇r =
~p

m

H = ~p · ~̇r − L = ~p · ~p
m
−

(
1

2
m

(
~p

m

)2

− V (~r)

)
=

~p2

2m
+ V (~r)

Hamilton’s equations: 
~̇r = ∂H

∂~p = ~p
m

~̇p = −∂H∂~r = −∂V∂~r

In particular, for the free particle (V = 0), ~r is cyclic ⇒ ~̇p = 0 ⇒ ~p is constant.

1.2 Example: Particle in a central potential in polar coordinates

L =
m

2
(ṙ2 + r2φ̇2)− V (~r)

pr =
∂L

∂ṙ
= mṙ pφ =

∂L

∂φ̇
= mr2φ̇

H = pr ṙ + pφφ̇− L = pr
pr
m

+ pφ
pφ
mr2

− m

2

((pr
m

)2
+ r2

( pφ
mr2

)2)
+ V (r)

H =
p2r
2m

+
p2φ

2mr2
+ V (r)

Hamilton’s equations for r:

ṙ = ∂H
∂pr

= pr
m

ṗr = −∂H∂r =
p2φ
mr3 − V

′(r) = − ∂
∂r

[
V (r) +

p2φ
2mr2

]
︸ ︷︷ ︸

Veff(r)
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and for φ: 
φ̇ = ∂H

∂pφ
=

pφ
mr2

ṗφ = −∂H∂φ = 0 ⇒ pφ = mr2φ̇ = const.

1.3 Time evolution in Hamiltonian mechanics

A = A(~q, ~p, t) : Some physical quantity of the system.

How does it evolve?

Ȧ =
dA

dt
=
∂A

∂qi
q̇i +

∂A

∂pi
ṗi +

∂A

∂t

Using Hamilton’s equations this is

Ȧ =
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi
+
∂A

∂t

If we define the Poisson bracket by

{X, Y } ≡ ∂X

∂qi

∂Y

∂pi
− ∂X

∂pi

∂Y

∂qi

then

Ȧ = {A, H}+
∂A

∂t
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1.4 Aside: Poisson brackets and quantum mechanics

There is a special {, }, namely:

{x, p} =
∂x

∂x

∂p

∂p
− ∂x

∂p

∂p

∂x
= 1

The canonical commutation relation of quantum mechanics is

[x̂, p̂] ≡ x̂p̂− p̂x̂ = i~

(In the basis where the operator x̂ means multiplying the wavefunction by x, while p̂ is nothing but the

derivative: p̂ = −i~ ∂
∂x .)

The similarity between the Poisson bracket and the commutator suggests that we can go from classical

mechanics to quantum mechanics by replacing

{X, Y } → 1

i~
[X̂, Ŷ ]

where the hatted quantities are operators.

Using this “dictionary” (whenever it works), the time evolution of a quantum mechanical operator Â

should be
˙̂
A =

1

i~
[X̂, Ĥ] +

∂Â

∂t

This is the so-called Heisenberg equation in quantum mechanics.

1.5 Properties of Poisson brackets

(i)

{A, B} = −{B, A}

(ii)

{A, A} = 0

(iii)

{A, c} = 0

if c =const.

(iv)

{A+B, C} = {A, C}+ {B, C}

(v)

{A, BC} = B{A, C}+ {A, B}C

(vi) The Jacobi identity

{A, {B, C}}+ {B, {C, A}}+ {C, {A, B}} = 0
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1.6 A consequence of the Jacobi identity

If İ1 = İ2 = 0, i.e. they are both conserved, then {I1, I2} is also conserved (Poisson’s theorem). This way

we can generate a new conserved quantity (unless it is just a combination of the old I1 and I2).

Proof:
d

dt
{I1, I2} = {{I1, I2}, H}+

∂

∂t
{I1, I2}

using the Jacobi identity we get

= −{{I2, H}, I1} − {{H, I1}, I2}+ {∂I1
∂t

, I2}+ {I1,
∂I2
∂t
}

=

{
−{I2, H} −

∂I2
∂t

, I1

}
+

{
−{H, I1}+

∂I1
∂t

, I2

}
= 0

Q.E.D.

1.7 A charged particle in an electromagnetic field

The Lagrangian of a particle of mass m and charge e in an external electromagnetic field is

L =
1

2
m~̇r2 − V (~r, ~̇r)

with

V (~r, ~̇r) = eφ− e~̇r · ~A

where φ(~r, t) and ~A(~r, t) are the scalar and vector potentials related to electromagnetic fields ~E and ~B via

~E = −∂t ~A− ~∇φ

~B = ~∇× ~A

(This is our first encounter with a velocity-dependent potential. In this case, force is not given by −∂V∂q ; see

Goldstein §1.5)

We prove the above by showing that the Euler-Lagrange equation derived from the above Lagrangian is

the familiar

mẍi = eEi + e(~̇r × ~B)i

where i = 1, 2, 3. Note that we have set c = 1.
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Proof:

L =
1

2
m~̇r2 − eφ+ e~̇r · ~A

pi =
∂L

∂ẋi
= mẋi + eAi

∂L

∂xi
= −e∇iφ+ eẋj∇iAj

ṗi = mẍi + e
d

dt
Ai(~r, t) = mẍi + e(∂tAi + ẋj∇jAi)

So the Euler-Lagrange equations (ṗi = ∂L
∂xi

) give

mẍi + e(∂tAi + ẋj∇jAi) = −e∇iφ+ eẋj∇iAj

mẍi = e (−∂tAi −∇iφ)︸ ︷︷ ︸
Ei

+eẋj(∇iAj −∇jAi)

But

(~̇r × ~B)i = (~̇r × (~∇× ~A))i = εijkẋj(~∇× ~A)k = εijkẋjεklm∇lAm

Using the identity: εkijεklm = δilδjm − δimδjl we get

(δilδjm − δimδjl)ẋj∇lAm = ẋj(∇iAj −∇jAi)

Therefore,

mẍi = eEi + e(~̇r × ~B)i

Q.E.D.

1.8 Remark 1: Lorentz invariance

The interaction term

Sint = −
∫
dt V = −

∫
dt(eφ− e~̇r · ~A)

can be written as

Sint = −
∫
d4x(ρφ− ~J · ~A) =

∫
d4xJµAµ

where

Aµ = (−φ, ~A)

Jµ = (ρ, ~J)

These are four-vectors of relativity. ρ is the charge density and ~J is the current density.
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In the above point-particle case:

ρ = eδ(3)(~r − ~r(t))

~J = e~̇rδ(3)(~r − ~r(t))

where the particle of charge e is moving along the trajectory ~r = ~r(t).

JµAµ is a scalar (invariant under Lorentz transformations), so the action is also Lorentz invariant.

1.9 Remark 2: “gauge invariance”

We have previously seen that the Euler-Lagrange equations are unchanged if the Lagrangian is changed by

a total derivative.

We have

L =
1

2
m~̇r2 + Lint

Lint = −eφ+ e~̇r · ~A

Let us consider the transformation

Aµ → Aµ + ∂µΛ

Here we used the notation ∂µ ≡ (∂t, ~∇) and µ = 0, 1, 2, 3. Here Λ = Λ(~r, t) is an arbitrary function. The

above transformation means

φ→ φ− ∂tΛ

and
~A→ ~A+ ~∇Λ

It is a gauge transformation.

Lint → L′
int = Lint + e∂tΛ + e~̇r · ~∇Λ = Lint + e

d

dt
Λ(~r(t), t)

The second term is a total derivative and thus it will not affect the Euler-Lagrange equations. Hence, the

transformation is a symmetry of the theory1 and this is called gauge invariance.

• One can understand this also by noting that the physical fields ~E, ~B do not change under gauge

transformations:
~E = −∂t ~A− ~∇φ → −∂t ( ~A+ ~∇Λ)︸ ︷︷ ︸

~A′

−~∇ (φ− ∂tΛ)︸ ︷︷ ︸
φ′

= ~E

and
~B = ~∇× ~A → ~∇× ( ~A+ ~∇Λ) = ~∇× ~A+ ~∇× ~∇Λ︸ ︷︷ ︸

0

= ~B

1It really is not a physical symmetry, but a redundancy in the description of the physical degrees of freedom.
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• There are infinitely many different ways to choose (φ, ~A) that give the same ~E, ~B. This arbitrariness

can be removed by “fixing the gauge”, i.e. by imposing some conditions to be satisfied by φ and ~A.

For instance the Coulomb (or radiation) gauge is:

~∇ · ~A = 0

Can we do further gauge transformations while staying in this gauge?

0 = ~∇ · ~A′ = ~∇ · ( ~A+ ~∇Λ) = ∇2Λ = 0

If we require that Λ→ 0 as |~r| → ∞, the only solution is Λ = 0. Thus, the Coulomb gauge choice completely

fixes the gauge.

1.10 Hamiltonian of a charged particle

L =
1

2
m~̇r2 − eφ+ e~̇r · ~A

pi =
∂L

∂ẋi
= mẋi + eAi ⇒ ẋi =

1

m
(pi − eAi)

H = piẋi − L = pi
1

m
(pi − eAi)−

[
1

2
m

1

m2
(pi − eAi)2 − eφ+ e

1

m
(pi − eAi)Ai

]
= (pi − eAi)

1

m
(pi − eAi)−

1

2m
(pi − eAi)2 + eφ

H =
1

2m
(~p− e ~A)2 + eφ

• The Hamiltonian of a charged particle is obtained by

(i) Perform “minimal substitution”:

~p→ ~p− e ~A

(ii) Add the potentia lterm, eφ
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1.11 A peek at quantum mechanics

What is the Schroedinger equation for a particle of mass m and charge e in an electromagnetic field?

Hclassical =
1

2m
(~p− e ~A)2 + eφ

In quantum mechanics, ~p→ −i~~∇. So

(~p− e ~A)2 → (−i~~∇− e ~A)2 = −~2~∇2 + e2 ~A2 + i~e( ~A · ~∇+ ~∇ · ~A) = −~2~∇2 + e2 ~A2 + 2i~e ~A · ~∇+ i~e(~∇ · ~A)

If we go to Coulomb gauge, then ~∇ · ~A = 0. So in this gauge the Schroedinger equation is(
− ~2

2m
~∇2 +

e2

2m
~A2 +

i~
m
~A · ~∇+ eφ

)
Ψ = EΨ
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