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1 Hamiltonian mechanics

1.1 Example: Harmonic oscillator

L=—1"—-
2" T o
oL .
=— =m&
P=%9i
We need to express & = @(z,p,t). We get
i=L
m
2
. p 2
H = —L=—+-k
P 2m 2
Hamilton’s equations:
. _ OH -
L= "o &=
=
p=-51 p=—ka

This can be converted into a second order equation by plugging p into the second equation:
mi = —kx

We get the good old Newton’s equation.
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The solution:

p=mi = —Amwsin(wt + )
As a trajectory in phase space:
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This equation describes an ellipse in phase space.

Trajectories are parametrized by A.



Motion in configuration space:

e The particle moves back and forth between A and —A.
e Trajectories with different values of A overlap.

e (0) is not enough to determine x(¢) for ¢ > 0.

Motion in phase space:

e A trajectory is an ellipse.
e Trajectories with different values of A do not overlap.

e giving an initial position (z(0),p(0)) is enough to determine the time-evolution.
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1.2 Example: A particle in a potential
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We need to express & = &(z,p,t). We again get
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1.3 Example: A planar pendulum
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1.4 Many degrees of freedom

Straightforward generalization of the 1 DoF case.

Start with L(q, ¢, t), where ¢ = (q1, - .., qn)-
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Then the Hamiltonian is

H(q,p,t) = pigi — L

where a summation over i = 1,...,n is understood.
e M is again the energy expressed as a function of ¢, p,t instead of ¢, (j', t.

e Hamilton’s equations can be derived exactly the same way (just add the index 7):
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and we also have
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e Hamilton’s equations are a system of first-order differential equations for 2n variables ¢, p.

1.5 Cyclic coordinates

Let us recall that we called generalized coordinates cyclic if they did not appear in the Lagrangian:
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In this case the conjugate momentum is conserved:
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In the Hamiltonian formulation,
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so if ¢; does not appear in L, then it will not appear in H either, and vice versa.
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