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1 Hamiltonian mechanics

1.1 Example: Harmonic oscillator

L =
m

2
ẋ2 − k

2
x2

p =
∂L

∂ẋ
= mẋ

We need to express ẋ = ẋ(x, p, t). We get

ẋ =
p

m

H = pẋ− L =
p2

2m
+

1

2
kx2

Hamilton’s equations: 
ẋ = ∂H

∂p

ṗ = −∂H∂x

⇒


ẋ = p

m

ṗ = −kx

This can be converted into a second order equation by plugging p into the second equation:

mẍ = −kx

We get the good old Newton’s equation.

ẍ+ ω2x = 0, ω ≡
√
k

m

The solution:

x = A cos(ωt+ α)

p = mẋ = −Amω sin(ωt+ α)

As a trajectory in phase space: (
x

p

)
=

(
A cos(ωt+ α)

−Amω sin(ωt+ α)

)
The energy:

E = H =
p2

2m
+

1

2
kx2 =

k

2
A2

This equation describes an ellipse in phase space.

Trajectories are parametrized by A.
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Motion in configuration space:

• The particle moves back and forth between A and −A.

• Trajectories with different values of A overlap.

• x(0) is not enough to determine x(t) for t > 0.

Motion in phase space:

• A trajectory is an ellipse.

• Trajectories with different values of A do not overlap.

• giving an initial position (x(0), p(0)) is enough to determine the time-evolution.
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1.2 Example: A particle in a potential

L =
m

2
ẋ2 − V (x)

p =
∂L

∂ẋ
= mẋ

We need to express ẋ = ẋ(x, p, t). We again get

ẋ =
p

m

H = pẋ− L =
p2

m
−
[
m

2

( p
m

)2
− V (x)

]
=

p2

2m
+ V (x)

Thus,

H =
p2

2m
+ V (x)

Hamilton’s equations: 
ẋ = ∂H

∂p = p
m

ṗ = −∂H∂x = −V ′(x)

⇒ mẍ = −V ′(x)
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1.3 Example: A planar pendulum

L(φ, φ̇) =
m

2
l2φ̇2 +mgl cosφ

pφ ≡
∂L

∂φ̇
= ml2φ̇

We need to express φ̇

φ̇ =
pφ
ml2

H = pφφ̇− L = pφ
pφ
ml2
− 1

2
ml2

( pφ
ml2

)2
−mgl cosφ =

pφ
2ml2

−mgl cosφ

H =
pφ

2ml2
−mgl cosφ

Hamilton’s equations: 
φ̇ = ∂H

∂pφ
=

pφ
ml2

ṗφ = −∂H∂φ = −mgl sinφ

Thus,

ml2φ̈ = −mgl sinφ

or

φ̈ = −g
l

sinφ
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1.4 Many degrees of freedom

Straightforward generalization of the 1 DoF case.

Start with L(~q, ~̇q, t), where ~q = (q1, . . . , qn).

pi ≡
∂L

∂q̇i
⇒ q̇i = q̇i(~q, ~p, t)

Then the Hamiltonian is

H(~q, ~p, t) = piq̇i − L

where a summation over i = 1, . . . , n is understood.

• H is again the energy expressed as a function of ~q, ~p, t instead of ~q, ~̇q, t.

• Hamilton’s equations can be derived exactly the same way (just add the index i):

q̇i =
∂H

∂pi

and

ṗi = −∂H
∂qi

and we also have
dH

dt
=
∂H

∂t
= −∂L

∂t

• Hamilton’s equations are a system of first-order differential equations for 2n variables ~q, ~p.

1.5 Cyclic coordinates

Let us recall that we called generalized coordinates cyclic if they did not appear in the Lagrangian:

∂L

∂qi
= 0

In this case the conjugate momentum is conserved:

pi =
∂L

∂q̇i
= const.

In the Hamiltonian formulation,
∂H

∂q̇i
= −ṗi = − ∂L

∂qi

so if qi does not appear in L, then it will not appear in H either, and vice versa.
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