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1 Small Oscillations

1.1 Example: Double pendulum

~

e 2 DoF's

{ 21 =11 sin ¢
y1 = l1 cos ¢

{ To = T1 +lgsin(;52
Y2 = Y1 + lacos da

1 . . 1 . . 1 1 . . .
T = §m1($% +97) + sma(i3 + 93) = §m1l%¢% + §m2(l%¢% + 1303 + 211121 P2 cos(p1 — $2))

2

V = —migy1 — magy2 = —g(l1(m1 + ma) cos g1 + lama cos ¢2)

For simplicity, let us set
mi1 = Mmo =M, llzlgzl
Then,
. 1 . .
T =mi?¢? + 5m12¢§ + mil?p1a cos(p1 — o)

V = —2mgl cos ¢1 — mgl cos ¢o



e Equilibrium positions are found by solving

é%/l = 2mygl sin ¢,
= ¢1=¢2=0

gT‘; = mgl sin ¢o

Other solutions, such as ¢; = ¢ = 7 are clearly unstable.

e The Hessian
8%V
¢

= 2mgl cos ¢

=

2V ] _ 2 0
daz = Myl cos d = Vij—mgl(o 1)

8%V
96:0g5 — 0

e Kinetic energy

aij (1, P2)Pid;

. 1 . . 1
T =mi*¢? + 5m12¢§ + ml? 1y cos(dp1 — d2) = 3

From this we can read off a;;:

( 2mi? mi? cos(p1 — ¢2) )
aij =

mi? cos(p1 — ¢2) mi?

and finally,
Tij = aij(¢1 =10, g2 = 0) =ml 11

Note: be careful with the % when reading off a;;!

e Let us now follow the procedure. The secular equation:

det(w?*T - V) =0



So the normal frequencies are

(2-V2)
(2+V2)

2
W =

~lQ |

Wy =
e Plug these back in to find amplitudes A
(W?Tij = Viy)A; =0

(e ) ()

Since the determinant of the matrix vanishes, the two equations are not independent. We only need to solve
one of them.

e Plug in w(Ql)

V2A, - A3 =0
Ay 1
= C
()=o() e
This is the first normal mode that we have found.

Solution _
N = Re[ce™ 1]

no = Re[v/2ce™ ™!

e Plug in w(22)

2(32+v2) - %) A+ T2+ VD) =0

V2A, + A3 =0

A 1
<A2) (_ﬁ> ceC
This is the second normal mode that we have found.

Solution 4
N = Re[ce™ 1]

Ny = Re[—V/2ce™®!]

N &
> <
norma. norma.
mode, { mode 2



1.2 Example: Linear triatomic molecule in 1D

m M m
YT -@- TN o —sq
% Ly As

e 3 DoF's
e Modeled with spring forces (e.g. CO2).
{ T = jm(if+i3) + $Mi3
V= ik(zs—z1 —1)? + Sk(zz — x0 — 1)?
where [ is the rest length of the springs.
Equilibrium positions are found by solving

0=585 = —k(zg—a1—1)

0:%: kj(.’I}Q—xl—l)_k($3—$2—l):k(QxQ_xl_mB)

0= = k(zz—xo—1)

Oz3

Thus,
x2—x1:l, 1’3—1’2:l

Note that only relative positions are determined.

e Hessian: 92 92 e
VBV Y,
Oxy 0x3 Oxs
0%V . o*V _ R _
8$18I2 o ’ (99318:173 o 895281:3 -
Thus,
1 -1 0
Vij=k| -1 2 -1
0o -1 1

The matrix is independent of the x’s.

0 O

M 0

0 m

e Let us now again follow the procedure. The secular equation:

det(W?T = V) =0



e Solutions:

e The amplitudes:

i 02
e Plug in Wigy = 0

Thus,

o Plug in wf;) =

Thus,

mw? — k k 0
det k Mw? — 2k k =0
0 k

k mw? —

(mw? — k)*(Mw? — 2k) — 2k*(mw® — k) =0

CU(QO) = 0
k
2
Yo T,
k 2m
2
142
ek ()
mw? — k k 0 Ay
ko Mw? -2k k As
0 k mw? — k As
1 -1 0 A
kl -1 2 -1 A, | =0
0 -1 1 A;
Ay 1
A2 =C
Az
m =12 = N3 = Re[ce™ "] = const.
Overal| transletion
- S5 -
0 1 0 A
k{1 -2 1 A | =0
o 1 0 As
A, 1
A2 =cC O
As -1
m = —ng = ReleeVi'], =0



—  fied
e Plug in w(Ql) = % (1 + Qﬁ)

k(1+232) -k k 0 A
k ME (14 2m) k Ay | =0
0 k kE(1+232) —k

Thus,

k. 2m 2m
m =n3 = Relce e (1457 )t], 2 —ﬁm
- e: >
«— > —

If m < M, then the middle one doesn’t move.

1.3 Example: Pendulum with moving suspension point

e 2 DoF's
Ty =X Ty =X+ Ising
ypm =0 Ym = lcOS @

FM (@3, + ) + gmlas, +95) = 547
—MGYm = —mgl cos ¢

—N
<44
1l

+ 2 (a2 + 1292 + 2li:¢ cos ¢)



e Equilibrium positions

ov ov
%:O, %:mglsm(é:()
This gives ¢ = 0 and = =arbitrary.

e The 7 and V matrices:

T_<M+m ml)

ml mi?

0 0
V<0 mgl)

e secular equation

w?(M +m) w?ml
det ( w?ml w?ml? — mgl ) =0

e The solutions are

UJ(20) =0

This is again an overall translation.

oty =70+ 57)

w?(M +m) w?ml Ay
2 2,72 =0
wml w*ml® — mgl Ay

g m
I(t) = Tarbitrary — |: 1+ M :|

¢(t) = Re |:A2€i (1+47) ]

If m < M, then & = Zarbitrary: the problem reduces to a simple pendulum.



2 Hamiltonian mechanics

So far w ehave been using the Lagrangian formalism of mechanics, in which the system is described by

generalized coordinates ¢ and generalized velocities q"

We now want to introduce the Hamiltonian formalism, in which the system is described by generalized

coordinates ¢ and generalized momenta p.

This formalism is even more general: it treats ¢ and p on equal footing.

2.1 Legendre transformation

e It is a procedure to go from (g, ¢) to (g, p).

e Very often used in thermodynamics.

Consider one degree of freedom. Let us eliminate ¢ in terms of p = %%. This gives a function

q=4q(q,p,1)

Now go from the Lagrangian L(q, ¢,t) to the Hamiltonian H(g,p,t) by

H=pi—L

The right hand side involves ¢ which we need to reexpress in terms of p. Then we get H = H(q,p,t).

2.2 Hamilton’s equations

Consider a small change in H
dH = d(pg — L) = dpq + pdq — dL

Here oL 9L . oL
dL = —dq+ ——dq+ —dt
9¢ 1T 3¢ i
50 OL OL OL OL OL
dH =d dG — —dq — —dj — —dt = ¢d — — | d¢— —dq
pq + pdq g q a4 ot qp+< 8(]) q g
0
Thus,
oL oL
dH = ¢dp — —dq — —dt
ddp — 5 -dg —
On the other hand, H = H(q,p,t) gives
ai =22 4q 02 4y 02

0q op ot

oL
— —dt
ot



Since ¢, p,t are independent, comparing the coefficients gives
oH _ oL oH_ . oH_ oL
o ~ o op T ot T ot
These simply followed from the definition of p and H.

Let us now also use the Euler-Lagrange equation p = %—2 to get Hamilton’s equations

o

qi@p
and

_—

e Note that ¢ and p appear symmetrically (up to a sign).

e These are first-order differential equations for two variables, in contrast to the Euler-Lagrange equation
which is a second-order equation for a single variable gq.

e The 2d space of (g, p) is called the phase space. (Previously we have defined the configuration space
which is the 1d space of ¢.)

e The Hamiltonian is the energy of the system: the Noether invariant associated to time-translation.

e Given the initial position (g, p) in pahse space at t = to, H(q, p) tells us how to evolve in t:

(- (%)

For instance, if H = L (p? + ¢2), then

=

P
e d
77T \’\&
*Flowein S A
phase space | I'\'Ré_(w 1
*\<__z‘/ /
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