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1 Small Oscillations

1.1 Example: Double pendulum

• 2 DoFs

{
x1 = l1 sinφ1
y1 = l1 cosφ1{

x2 = x1 + l2 sinφ2
y2 = y1 + l2 cosφ2

T =
1

2
m1(ẋ21 + ẏ21) +

1

2
m2(ẋ22 + ẏ22) =

1

2
m1l

2
1φ̇

2
1 +

1

2
m2(l21φ̇

2
1 + l22φ̇

2
2 + 2l1l2φ̇1φ̇2 cos(φ1 − φ2))

V = −m1gy1 −m2gy2 = −g(l1(m1 +m2) cosφ1 + l2m2 cosφ2)

For simplicity, let us set

m1 = m2 = m, l1 = l2 = l

Then,

T = ml2φ̇21 +
1

2
ml2φ̇22 +ml2φ̇1φ̇2 cos(φ1 − φ2)

V = −2mgl cosφ1 −mgl cosφ2
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• Equilibrium positions are found by solving

∂V
∂φ1

= 2mgl sinφ1

∂V
∂φ2

= mgl sinφ2

 ⇒ φ1 = φ2 = 0

Other solutions, such as φ1 = φ2 = π are clearly unstable.

• The Hessian
∂2V
∂φ2

1
= 2mgl cosφ1

∂2V
∂φ2

2
= mgl cosφ2

∂2V
∂φ1∂φ2

= 0


⇒ Vij = mgl

(
2 0

0 1

)

• Kinetic energy

T = ml2φ̇21 +
1

2
ml2φ̇22 +ml2φ̇1φ̇2 cos(φ1 − φ2) ≡ 1

2
aij(φ1, φ2)φ̇iφ̇j

From this we can read off aij :

aij =

(
2ml2 ml2 cos(φ1 − φ2)

ml2 cos(φ1 − φ2) ml2

)
and finally,

Tij = aij(φ1 = 0, φ2 = 0) = ml2
(

2 1

1 1

)
Note: be careful with the 1

2 when reading off aij !

• Let us now follow the procedure. The secular equation:

det(ω2T − V) = 0

det

[
ω2ml2

(
2 1

1 1

)
−mgl

(
2 0

0 1

)]
= 0

det

(
2(ω2 − g/l) ω2

ω2 ω2 − g/l

)
= 0

2(ω2 − g/l)2 − ω4 = 0

ω4 − 4
g

l
ω2 + 2

g2

l2
= 0

ω2 =
g

l
(2±

√
2)
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So the normal frequencies are

ω2
(1) =

g

l
(2−

√
2)

ω2
(2) =

g

l
(2 +

√
2)

• Plug these back in to find amplitudes A

(ω2Tlj − Vlj)Aj = 0

(
2(ω2 − g/l) ω2

ω2 ω2 − g/l

)(
A1

A2

)
= 0

Since the determinant of the matrix vanishes, the two equations are not independent. We only need to solve

one of them.

• Plug in ω2
(1)

2
(g
l
(2−

√
2)− g

l

)
A1 +

g

l
(2−

√
2)A2 = 0

√
2A1 −A2 = 0(

A1

A2

)
= c

(
1√
2

)
, c ∈ C

This is the first normal mode that we have found.

Solution 
η1 = Re[ceiω(1)t]

η2 = Re[
√

2ceiω(1)t]

• Plug in ω2
(2)

2
(g
l
(2 +

√
2)− g

l

)
A1 +

g

l
(2 +

√
2)A2 = 0

√
2A1 +A2 = 0(

A1

A2

)
= c

(
1

−
√

2

)
, c ∈ C

This is the second normal mode that we have found.

Solution 
η1 = Re[ceiω(2)t]

η2 = Re[−
√

2ceiω(2)t]
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1.2 Example: Linear triatomic molecule in 1D

• 3 DoFs

• Modeled with spring forces (e.g. CO2).

{
T = 1

2m(ẋ21 + ẋ23) + 1
2Mẋ22

V = 1
2k(x2 − x1 − l)2 + 1

2k(x3 − x2 − l)2

where l is the rest length of the springs.

Equilibrium positions are found by solving

0 = ∂V
∂x1

= −k(x2 − x1 − l)

0 = ∂V
∂x2

= k(x2 − x1 − l)− k(x3 − x2 − l) = k(2x2 − x1 − x3)

0 = ∂V
∂x3

= k(x3 − x2 − l)

Thus,

x2 − x1 = l, x3 − x2 = l

Note that only relative positions are determined.

• Hessian:
∂2V

∂x21
= k,

∂2V

∂x22
= 2k,

∂2V

∂x23
= k

∂2V

∂x1∂x2
= −k, ∂2V

∂x1∂x3
= 0,

∂2V

∂x2∂x3
= −k.

Thus,

Vij = k

 1 −1 0

−1 2 −1

0 −1 1


The matrix is independent of the x’s.

Tij =

 m 0 0

0 M 0

0 0 m


• Let us now again follow the procedure. The secular equation:

det(ω2T − V) = 0
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det

 mω2 − k k 0

k Mω2 − 2k k

0 k mω2 − k

 = 0

(mω2 − k)2(Mω2 − 2k)− 2k2(mω2 − k) = 0

• Solutions:

ω2
(0) = 0

ω2
(1) =

k

m

ω2
(2) =

k

m

(
1 +

2m

M

)
• The amplitudes:  mω2 − k k 0

k Mω2 − 2k k

0 k mω2 − k

 A1

A2

A3

 = 0

• Plug in ω2
(0) = 0

k

 1 −1 0

−1 2 −1

0 −1 1

 A1

A2

A3

 = 0

Thus,  A1

A2

A3

 = c

 1

1

1


η1 = η2 = η3 = Re[cei×0×t] = const.

• Plug in ω2
(1) = k

m

k

 0 1 0

1 M
m − 2 1

0 1 0

 A1

A2

A3

 = 0

Thus,  A1

A2

A3

 = c

 1

0

−1


η1 = −η3 = Re[cei

√
k
m t], η2 = 0
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• Plug in ω2
(1) = k

m

(
1 + 2m

M

)
 k

(
1 + 2m

M

)
− k k 0

k M k
m

(
1 + 2m

M

)
k

0 k k
(
1 + 2m

M

)
− k

 A1

A2

A3

 = 0

Thus,  A1

A2

A3

 = c

 1

− 2m
M

1


η1 = η3 = Re[ce

i
√

k
m (1+ 2m

M )t], η2 = −2m

M
η1

If m�M , then the middle one doesn’t move.

1.3 Example: Pendulum with moving suspension point

• 2 DoFs

{
xM = x

yM = 0

{
xm = x+ l sinφ

ym = l cosφ

{
T = 1

2M(ẋ2M + ẏ2M ) + 1
2m(ẋ2m + ẏ2m) = M

2 ẋ
2 + m

2 (ẋ2 + l2φ̇2 + 2lẋφ̇ cosφ)

V = −mgym = −mgl cosφ
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• Equilibrium positions
∂V

∂x
= 0,

∂V

∂φ
= mgl sinφ = 0

This gives φ = 0 and x =arbitrary.

• The T and V matrices:

T =

(
M +m ml

ml ml2

)

V =

(
0 0

0 mgl

)

• secular equation

det

(
ω2(M +m) ω2ml

ω2ml ω2ml2 −mgl

)
= 0

• The solutions are

ω2
(0) = 0

This is again an overall translation.

ω2
(1) =

g

l

(
1 +

m

M

)
(
ω2(M +m) ω2ml

ω2ml ω2ml2 −mgl

)(
A1

A2

)
= 0

A1 = − ml

M +m
A2

x(t) = xarbitrary −
ml

M +m
Re

[
A2e

i
√

g
l (1+ m

M )t
]

φ(t) = Re

[
A2e

i
√

g
l (1+ m

M )t
]

If m�M , then x = xarbitrary: the problem reduces to a simple pendulum.
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2 Hamiltonian mechanics

So far w ehave been using the Lagrangian formalism of mechanics, in which the system is described by

generalized coordinates ~q and generalized velocities ~̇q.

We now want to introduce the Hamiltonian formalism, in which the system is described by generalized

coordinates ~q and generalized momenta ~p.

This formalism is even more general: it treats ~q and ~p on equal footing.

2.1 Legendre transformation

• It is a procedure to go from (q, q̇) to (q, p).

• Very often used in thermodynamics.

Consider one degree of freedom. Let us eliminate q̇ in terms of p ≡ ∂L
∂q̇ . This gives a function

q̇ = q̇(q, p, t)

Now go from the Lagrangian L(q, q̇, t) to the Hamiltonian H(q, p, t) by

H = pq̇ − L

The right hand side involves q̇ which we need to reexpress in terms of p. Then we get H = H(q, p, t).

2.2 Hamilton’s equations

Consider a small change in H

dH = d(pq̇ − L) = dpq̇ + pdq̇ − dL

Here

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇ +

∂L

∂t
dt

So

dH = dpq̇ + pdq̇ − ∂L

∂q
dq − ∂L

∂q̇
dq̇ − ∂L

∂t
dt = q̇dp+

(
p− ∂L

∂q̇

)
︸ ︷︷ ︸

0

dq̇ − ∂L

∂q
dq − ∂L

∂t
dt

Thus,

dH = q̇dp− ∂L

∂q
dq − ∂L

∂t
dt

On the other hand, H = H(q, p, t) gives

dH =
∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt
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Since q, p, t are independent, comparing the coefficients gives

∂H

∂q
= −∂L

∂q
,

∂H

∂p
= q̇,

∂H

∂t
= −∂L

∂t
.

These simply followed from the definition of p and H.

Let us now also use the Euler-Lagrange equation ṗ = ∂L
∂q to get Hamilton’s equations

q̇ =
∂H

∂p

and

ṗ = −∂H
∂q

• Note that q and p appear symmetrically (up to a sign).

• These are first-order differential equations for two variables, in contrast to the Euler-Lagrange equation

which is a second-order equation for a single variable q.

• The 2d space of (q, p) is called the phase space. (Previously we have defined the configuration space

which is the 1d space of q.)

• The Hamiltonian is the energy of the system: the Noether invariant associated to time-translation.

• Given the initial position (q, p) in pahse space at t = t0, H(q, p) tells us how to evolve in t:(
q̇

ṗ

)
=

( ∂H
∂p

−∂H∂q

)
For instance, if H = 1

2 (p2 + q2), then (
q̇

ṗ

)
=

(
p

−q

)
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