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1 Small Oscillations

1.1 Summary

e ¢ =0, ¢ = qo is a stable equilibrium position iff V'(gy) = 0 and V" (go) > 0.
e In this case, if we write ¢ = gy + n where 7 is small, then n will do small harmonic oscillations.

e The frequency of oscillations is

V//(qo)
a(qo)

w =

e The period is T = %’T

o If V'(qo) =0 but V" (qo) < 0, then ¢ = ¢p is an unstable equilibrium position. In this case

2 _ V"(q)

w = <0
a(qo)

1.2 Example: A bead on a wire of equation y = f(x)

¢ Y=Fx)

e #DoF =1
e generalized coordinate: x
e potential: V = mgy = mgf(x)

e kinetic energy:

T= %m(:’ﬁ +9°) = %m(i’Q + f'(2)%?) = %mifz(l + f'(2)?)



e Lagrangian:
1
L=T-V=comi*(L+ f(z)*) —mgf(x)

e Equilibrium position:
V’(l‘o) =0 o f’(xo) =0
V" (xo) >0 f"(z0) >0
Namely, 2p must be a local minimum of f(z).

e frequency of small oscillations:

Expand z = z + 1 + O(n?) and use f'(x9) =0

1 1 1
T = mi*(1+ f'(2)?) = ;ma*(1+ f'(20)°) = Smip®
2 2 — 2
0

1.3 Many variables

1 ..
L= §az‘j((f)qiqg' - V(9

where 4,5 =1,...,n.
e We will study equilibrium positions, just as in the 1 DoF case.

e We will also study small fluctuations around stable equilibrium positions.

1.4 New features

e Small fluctuations behave as independent harmonic oscillations.
e The motion of the system can be thought of as a superposition of normal modes.

e A normal mode is a pattern of motion in which all the degrees of freedom in the system oscillate at
the same frequency, called the normal frequency.

e In an n DoF system, there are n normal modes.



For instance: Double pendulum (#DoF = 2)
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>
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1.5 Stability
As in the 1 DoF case, we define a stable equilibrium position
(=0,  q=d

if ¢o is a local minimum of V(§), namely

il =0 forall:=1
a(Zi do

PR

and the Hessian matrix at ¢ = ¢o

0%V
9q:9q; |5,

is positive definite, i.e.
7-Vij >0

for any non-zero 7. This means that V increases in all directions away from ¢y, so ¢y is a local minimum.

e Note: V;; = Vj; (symmetric)

Theorem: For a symmetric matrix the following two conditions are equivalent:

(1) For all non-zero 7 one has 7 - Vij > 0.

(2) All eigenvalues of V are strictly positive.



1.6 Lagrangian of small oscillations

1 ..
L= 5%‘;‘@%%‘ - V()

where 4,7 = 1,...,n. Expand this around

in fluctuations 7 = ¢ — qo.

Ignoring irrelevant constants and higher-order terms (O(n?)), the Lagrangian is

1__ .. 1
Ly = 5 Tignin; — 5 Vigninj

Here

0*V
7;1' = aij((j), Vij = 8(]‘8(]‘
2T 1 qo

e Both are constant symmetric matrices.
e V;; is positive definite by assumption.
e For the kinetic energy to be always positive, 7;; is also positive definite.

Euler-Lagrange equations:

oL 1__ . 1__ . .
377'71 = ?ﬁjﬂj + 57;1771' = 77]‘773‘
oL 1., . 1., . .
o =5Vl = 5Vl = = Vi
So we have
Tijiiy + Vign; =0
forl=1,...,n.

1.7 Finding normal modes

Now let us find solutions of
Tijiiy + Vin; =0

of the form
nj = Re[Ajei“t] Aj eC
with the same w for all j =1,...,n.

As we have discussed, with the understanding that we take the real part at the very end, let us plug this
7; into the Euler-Lagrange equations. We get

(w?Tij = Vi) 4; =0




These are n homogeneous equations in n unknowns A;. The only solution is A; = 0 for all j, unless:

det(w?*T = V) =0

This is called the secular equation, or the characteristic equation. It is an equation for w.
e It is an algebraic equation of degree n in w?. Thus, there are n solutions.
e The solutions (w) are called normal frequencies.
o All w? > 0.

e If we plug each value of w? back into
(w?Tij = Vij) Aj =0

we can find the amplitude A; for each degree of freedom.

1.8 Procedure to get normal modes

(1) Find an equilibrium position by solving
ov
9q;

=0

do

(2) Compute the matrices
0?V
Vij =
9q;0q;

Tij = ai5(9),

do

For stability, V must be positive definite.

(3) Solve the secular equation
det(w?*T = V) =0

to determine n normal frequencies w.

(4) Plug back w? into
(W?Tiy = Vi) 4; =0
to get the amplitude A.

We have to solve n — 1 out of these n equations to find A.



