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1 Spinning tops

1.1 Free rotation

Set Ka = 0. The Euler equations simplify to

ω̇1 +
I3 − I2
I1

ω2ω3 = 0

ω̇2 +
I1 − I3
I2

ω1ω3 = 0

ω̇3 +
I2 − I1
I3

ω1ω2 = 0

Let us study these in special cases.

1.1.1 Symmetric top: I1 = I2

ω̇3 = 0 implies ω3 =const.

The other two equations become {
ω̇1 = −Ωω2

ω̇2 = +Ωω1

where Ω ≡ ω3
I3−I1
I1

.

Now this can be written as a complex valued equation

d

dt
(ω1 + iω2) = iΩ(ω1 + iω2)

with solution

ω1 + iω2 = AeiΩt
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Choosing real A the result is


ω1 = A cos Ωt

ω2 = A sin Ωt

ω3 = const.

This motion is called precession.

The ~ωII vector goes once around in time T = 2π
Ω .

Note that this precession is with respect to the body axes which are moving themselves. The precession

in an inertial frame is different.

1.1.2 Angular momentum

~LCOM,II = I~ωII , I1 = I2

 LII1
LII2
LII3

 =

 I1ω
II
1

I1ω
II
2

I3ω
II
3

 =

 I1A cos Ωt

I1A sin Ωt

I3ω
II
3


• Similar behavior as ~ωII .

• ~L is conserved because the torque ~K = 0. Thus, its components in SI are constant. The above motion

is because SII is moving.

• Note that

~ω = ω1x̂+ ω2ŷ︸ ︷︷ ︸
≡~ω⊥

+ω3ẑ

~L = I1(ω1x̂+ ω2ŷ︸ ︷︷ ︸
~ω⊥

) + I3ω3ẑ

which means that ~L, ~ω, and ~z are coplanar since they all lie on the rotating plane spanned by ẑ and ~ω⊥ as

shown in the following figure:
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• For Earth, Euler’s prediction (1765) was

I3 − I1
I1

≈ 1

305

ωII3 =
2π

1 day

which gives

Ω = ωII3

I3 − I1
I1

=
2π

305 days

and a period of T = 2π
Ω = 305 days.

But the actual period is 433 days (Chandler’s wobble, 1891), due to Earth’s non-rigidity.

1.2 Euler equations for an asymmetric top I1 6= I2 6= I3 6= I1

• This is an example of solvable systems, for which the equations of motion can be integrated and the

solution can be found explicitly.

• The explicit solution involves elliptic functions (see Landau-Lifshitz §37)

• We will limit ourselves to describe two things:

(i) Qualitative analysis

(ii) Rotation near one of the principal axes

1.2.1 Integrals (constants) of motion

~L : 3 inertial components

E : 1

}
4 integrals (constants) of motion

However, we are describing motion in the non-inertial frame SII . The components of ~L in SII are not

separately conserved.

An idea: Consider (~L)2 which is the same in SI and SII and thus is a constant of motion.

Let’s denote L ≡ |~L|. Recall that ~L = I~ω. We will drop the label “II” and denote the components of ~ω

in SII by (ω1, ω2, ω3). Then,

L2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3
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Also,

E ≡ T =
1

2
~ω · I~ω =

1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
We thus get two integrals of motion:

L2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3

2E = I1ω
2
1 + I2ω

2
2 + I3ω

2
3

Or, experessing ~ω in terms of ~L,

L2 = L2
1 + L2

2 + L2
3

2E =
L2

1

I1
+
L2

2

I2
+
L2

3

I3

where (L1, L2, L3) are the components of ~L in SII .

1.2.2 The solution (in principle)

Given the L2 and E constants, we could solve the equations for, say, ω1 and ω2:{
ω1 = ω1(ω3; L2, E)

ω2 = ω2(ω3; L2, E)

Then one could take

I3ω̇3 = (I1 − I2)ω1ω2 = f(ω3)

and find ω3 as a solution to this differential equation.

This lease to a complete solution (see Landau-Lifshitz §37)

1.3 Rotation near one of the principal axes

The general rotation is complicated. Instead, study the following stability problem.

• Consider Euler’s equations for a rigid body with generic I1,2,3.

ω̇1 +
I3 − I2
I1

ω2ω3 = 0

ω̇2 +
I1 − I3
I2

ω1ω3 = 0

ω̇3 +
I2 − I1
I3

ω1ω2 = 0

The following are solutions:

ω1 = const., ω2 = ω3 = 0

ω2 = const., ω1 = ω3 = 0

ω3 = const., ω1 = ω2 = 0

Namely, rotation around one of the principal axes is in fact a solution of Euler’s equations.
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• Question: Are these solutions stable? If we consider small perturbations around such a solution, will

the system stay close to the original solution?

• Assume: At the initial time, the rigid body rotates about an axis near one of its principal axes, say x̂3.

Then,

ω1 = ε1(t)

ω2 = ε2(t)

ω3 = ω0 + ε3(t)

where at t ≈ 0: ε1,2,3 � ω0.

We want to now the motion for small times after t = 0. Plugging the above ωi into Euler’s equations,

I1ω̇1 = I1ε̇1 = (I2 − I3)ω2ω3 ≈ (I2 − I3)ω0ε2

I2ω̇2 = I2ε̇2 = (I3 − I1)ω1ω3 ≈ (I3 − I1)ω0ε1

I3ω̇3 = I3ε̇3 = (I1 − I2)ω1ω2 ≈ 0

Here we have neglected terms of order O(ε2). The equations are

ε̇1 =
I2 − I3
I1

ω0ε2

ε̇2 =
I3 − I1
I2

ω0ε1

ε̇3 = 0

Take one more time-derivative:

ε̈1 =
I2 − I3
I1

ω0ε̇2 =
(I2 − I3)(I3 − I1)

I1I2
ω2

0ε1

ε̈2 =
I3 − I1
I2

ω0ε̇1 =
(I3 − I1)(I2 − I3)

I1I2
ω2

0ε2

so we get

ε̈1 = −Ω2ε1

ε̈2 = −Ω2ε2

ε̇3 = 0

where

Ω2 ≡ ω2
0

(I3 − I2)(I3 − I1)

I1I2

which is not necessarily positive!
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Two cases:

(i) Ω2 > 0 ⇔ (I3 − I2)(I3 − I1) > 0

which means I3 < I1, I2 or I3 > I1, I2.

Then, the motion is oscillatory: ε1,2 ∝ eiΩt

If the amplitude is small at t = 0, then it will remain small.

The motion about an axis near the one with the smallest or largest principal moment is stable.

(ii) Ω2 < 0 ⇔ I1 < I3 < I2 or I2 < I3 < I1

In this case we see exponential growth: ε1,2 ∝ e+
√
|Ω2|t

The motion about an axis near the intermediate axis is unstable.

• As ε1,2 grow, the condition that they are small is violated and one should resort to the exact solution.

• The above result is called the “intermediate axis theorem”, or the “‘tennis racket theorem”

For further discussions of rigid bodies, see the lecture notes from 2016/17.
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2 Small Oscillations

• Physical systems display equilibrium configurations.

• Equilibrium means that the system remains in that position/configuration indefinitely, when placed

there with no initial velocities.

• When the equilibrium is stable, a small perturbation (i.e. a small kick) results in oscillations about

the equilibrium position.

• To first order approximation, the oscillations are harmonic: single constant-frequency oscillations

independent of amplitude.

• Consider a Lagrangian system described by certain generalized coordinates:

~q =

 q1

...

qn

 (n degrees of freedom)


~r1 = ~r1(q1, . . . , qn)
...

~rN = ~rN (q1, . . . , qn)

2.1 Kinetic energy

To discuss oscillations in general systems, let us find the general form of the kinetic energy in terms of ~q.

T =
1

2

N∑
k=1

mk~̇r
2
k

~̇rk =
d

dt
~rk(q1, . . . , qn) =

∑
i

∂~rk
∂qi

q̇i

Thus,

T =
1

2

N∑
k=1

n∑
i,j=1

mk
∂~rk
∂qi
· ∂~rk
∂qj

q̇iq̇j ≡
1

2

n∑
i,j=1

aij(~q)q̇iq̇j

So

T =
1

2

n∑
i,j=1

aij(~q)q̇iq̇j

where

aij(~q) ≡
N∑
k=1

mk
∂~rk
∂qi
· ∂~rk
∂qj

Note that a is symmetric: aij = aji.
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For the potential we will always assume V = V (~q).

• Theorem: The configuration ~̇q = 0, ~q = ~q0 is a solution of the Euler-Lagrange equations if

∂V

∂~q

∣∣∣∣
~q=~q0

= 0

This is an equilibrium position.

Proof:

The Euler-Lagrange equations are
d

dt

∂L

∂~̇q
− ∂L

∂~q
= 0

Here because V does not contain ~̇q (which was our assumption),

∂L

∂~̇q
=
∂T

∂~̇q

Now at ~̇q = 0, ~q = ~q0

T =
1

2
aij(~q)q̇iq̇j = 0

∂T

∂q̇i
= aij q̇j = 0

∂T

∂qi
=
∂ajk
∂qi

q̇j q̇k = 0

Therefore,
∂L

∂~q

∣∣∣∣
~q=~q0

=

(
∂T

∂~q
− ∂V

∂~q

)∣∣∣∣
~q=~q0

= 0− ∂V

∂~q

∣∣∣∣
~q=~q0

= 0 (by assumption)

Since we have seen that ∂L

∂~̇q
= 0, we have that

d

dt

∂L

∂~̇q
− ∂L

∂~q
= 0

Q.E.D.

2.2 Examples of aij(~q)

2.2.1 Spherical polar coordinates

~r = (x, y, z)→ (r, θ, φ)


x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

• We could compute aij using the definition

aij(~q) ≡
N∑
k=1

mk
∂~rk
∂qi
· ∂~rk
∂qj
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but in concrete cases like this, it is easy to compute T :

T =
m

2
(ẋ2 + ẏ2 + ż2) =

m

2
(ṙ2 + r2(θ̇2 + sin2 θ φ̇2)

and read off aij from it.

• Reading off aij :

T =
1

2
(ṙ θ̇ φ̇)

 m 0 0

0 mr2 0

0 0 mr2 sin2 θ

 ṙ

θ̇

φ̇


From this

aij(r, θ, φ) =

 m 0 0

0 mr2 0

0 0 mr2 sin2 θ


2.2.2 With a constraint

If we have the constraint r = fixed ≡ l, then the generalized coordinates can be (θ, φ).

T =
ml2

2
(θ̇2 + sin2 θ φ̇2) =

1

2
(θ̇ φ̇)

(
ml2 0

0 ml2 sin2 θ

)(
θ̇

φ̇

)
and thus

aij = diag(ml2, ml2 sin2 θ)

2.3 One degree of freedom

L = T − V =
1

2
a(q)q̇2 − V (q)

Equilibrium: q = q0, q̇ = 0, V ′(q0) = 0

The equilibrium position is stable if q = q0 is the minimum of the potential, i.e. V ′′(q0) > 0 (generically).

Let us look at this in more detail. Consider a small fluctuation around q = q0 and Taylor-expand the

Lagrangian in

η ≡ q − q0

Since T is quadratic, we only need to expand the potential up to 2nd order in η.

V (q) = V (q0) + η V ′(q0)︸ ︷︷ ︸
vanishes by assumption

+
1

2
η2V ′′(q0) + . . .
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V (q0) is an irrelevant constant in the potential. The Lagrangian is

L =
1

2
a(q0)η̇2 − 1

2
η2V ′′(q0) + const. +O(η3)

Note: we approximated a(q) ≈ a(q0) at this order.

If we set

a(q0) ≡ m > 0

V ′′(q0) ≡ mω2 > 0

then the 2nd order Lagrangian is

L =
1

2
mη̇2 − 1

2
mω2η2

which is the same as the Lagrangian of a simple harmonic oscillator.

The Euler-Lagrange equation is

η̈ + ω2η = 0

and

ω =

√
V ′′(q0)

a(q0)

is the frequency.

The general solution is

η(t) = c1 cosωt+ c2 sinωt

or equivalently:

η(t) = a cos(ωt+ α)

where a is the amplitude and α is the phase:

a =
√
c21 + c22 , tanα = −c2/c1.

We can also write this as

η(t) = Re[Aeiωt], A = aeiα ∈ C

A is the complex amplitude.

Since the complex function η(t) = Aeiωt is also a solution to the Euler-Lagrange equation, we can look

for a complex solution of the form η ∝ eiωt and take the real part at the end of the computation to get a

physical solution. In practice, this is very useful, because the action of derivatives are much simpler on eiωt

than on sine and cosine functions.
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2.4 Summary

• q̇ = 0, q = q0 is a stable equilibrium position iff V ′(q0) = 0 and V ′′(q0) > 0.

• In this case, if we write q = q0 + η where η is small, then η will do small harmonic oscillations.

• The frequency of oscillations is

ω =

√
V ′′(q0)

a(q0)

• The period is T = 2π
ω .

• If V ′(q0) = 0 but V ′′(q0) < 0, then q = q0 is an unstable equilibrium position. In this case

ω2 ≡ V ′′(q0)

a(q0)
< 0

The Euler-Lagrange equation is

η̈ − |ω2|η = 0

which has solutions

η = Ae−|ω|t +Be+|ω|t

This shows a runaway behavior (exponential growth) ⇒ instability.
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