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1 Spinning tops

1.1 Free rotation

Set K, = 0. The Euler equations simplify to

d}1+ LA 2(4)2&)3 =0
L
I — I

Wy + ! 3W1W3 = 0
2
I, — 1T

w3 + 2 1(,010.}2 = 0
I3

Let us study these in special cases.

1.1.1 Symmetric top: [; = I,

e.9. gpheroid

ws = 0 implies w3 =const.

The other two equations become
d)l = —QWQ
we = +Qwq

I;—1,
Il °

Now this can be written as a complex valued equation

where ) = w3

d
ﬁ(wl + iCUg) = iQ(wl + iCUQ)

with solution
w1+ iwy = Ae™H



Choosing real A the result is

w1 = AcosQt
wy = Asin Qi
w3 = const.

This motion is called precession.

The &y vector goes once around in time T = %’“

Note that this precession is with respect to the body axes which are moving themselves. The precession

in an inertial frame is different.

1.1.2 Angular momentum

Leom.r = Idrr, L =1
L Lt I Acos
Lél = Ilwél = IlA sin Q¢
L Lwi! Lwi!

e Similar behavior as dJyj.

e L is conserved because the torque K=0. Thus, its components in S; are constant. The above motion

is because Sy is moving.

e Note that

(:j = wli —+ wQQ +(AJ372
w_/
=W
L= I (w1# 4 waf) + sws?
——

Wl

which means that I_:, &, and Z are coplanar since they all lie on the rotating plane spanned by Z and &, as

shown in the following figure:
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rototes.
e For Earth, Euler’s prediction (1765) was
Isi—1 1
I 305
27
II _
“s 1 day
which gives
_ I I3 - Il o 2w

Q=w;

I, 305 days

and a period of T' = %77 = 305 days.

But the actual period is 433 days (Chandler’s wobble, 1891), due to Earth’s non-rigidity.

1.2 Euler equations for an asymmetric top I) # I, # I3 # I;

e This is an example of solvable systems, for which the equations of motion can be integrated and the
solution can be found explicitly.

e The explicit solution involves elliptic functions (see Landau-Lifshitz §37)

e We will limit ourselves to describe two things:

(i) Qualitative analysis

(ii) Rotation near one of the principal axes

1.2.1 Integrals (constants) of motion

L : 3 inertial components

2.1 } 4 integrals (constants) of motion

However, we are describing motion in the non-inertial frame S;;. The components of L in Sj; are not
separately conserved.

An idea: Consider (I_;)2 which is the same in S; and Sj;; and thus is a constant of motion.

Let’s denote L = \I_;| Recall that L = I&. We will drop the label “II” and denote the components of &
in Srr by (w1,ws2,ws). Then,
L? = wi + lw; + [w}



Also,

E=T=-d Id = < (Lwi + Lwj; + I3w3)

| —
N | —

We thus get two integrals of motion:

L? = Bw? + 3w + 3w}

2E = Lw? + Lw? + Izw?

Or, experessing & in terms of L,

L = Li+L3+13
L? L3 L}
oF — 1,23
L LT

where (L1, Lo, Ls3) are the components of Lin Sy;.

1.2.2 The solution (in principle)

Given the L? and E constants, we could solve the equations for, say, w; and wy:

w1 :wl(wg; _[/27 E)
w2 :wg(w;g; LQ7 E)

Then one could take
I3is = (I — Iz)wiwz = f(ws)

and find w3 as a solution to this differential equation.

This lease to a complete solution (see Landau-Lifshitz §37)

1.3 Rotation near one of the principal axes

The general rotation is complicated. Instead, study the following stability problem.

e Consider Euler’s equations for a rigid body with generic I; 2 3.

I3 — I
w1 + 3 2(,020.}3 = 0
1
. I — I
woy + ! 30.)1(4)3 = 0
2
. I, —1T
ws + 2 1(,01&)2 = 0
The following are solutions:
w1 = const., wy =wz =0
wg = const., wi; =w3z =0
w3 = const., w1 =wy =0

Namely, rotation around one of the principal axes is in fact a solution of Euler’s equations.



e Question: Are these solutions stable? If we consider small perturbations around such a solution, will
the system stay close to the original solution?

e Assume: At the initial time, the rigid body rotates about an axis near one of its principal axes, say Z3.
Then,

w1 = El(t)
wWo = €2 (t)
w3 = wo+e€3 (t)

where at t = 0: €123 < wo.

We want to now the motion for small times after ¢ = 0. Plugging the above w; into Euler’s equations,
110..}1 = Ilél = (12 — Ig)(,dgbug ~ (IQ — Ig)WOEQ

Ipto = Ipéy = (I3 — I1)wiws = (I3 — Iy )woer
130:}3 = Igég = (Il — 12)w1w2 ~0

Here we have neglected terms of order O(e?). The equations are

Take one more time-derivative:

. Dh—1I3 . (La—I3)(Is— 1) ,
€1 = Il Wp€2 = 11]2 Wpo€1
Is -1 I3 — 1)1y — I

3 1w0€. ( 3 })F{; 3)UJ(2)
1

€2

so we get
€1 = —9261
gQ = 79262
€3 =0
where

s _ oIz —D)Uzs— )
= L1,

which is not necessarily positive!



Two cases:

(1) P2>0 < (Ig—[g)(.lg-]ﬁ >0
which means I3 < I, Iy or I3 > Iy, I5.
Then, the motion is oscillatory: €; 2 o eifdt

If the amplitude is small at ¢t = 0, then it will remain small.

The motion about an axis near the one with the smallest or largest principal moment is stable.

(11)92<0 & Li<lz3<bhorly<Iz<Ih

. . 2
In this case we see exponential growth: €; 5 oc eV 122t

The motion about an axis near the intermediate axis is unstable.

e As € 5 grow, the condition that they are small is violated and one should resort to the exact solution.

e The above result is called the “intermediate axis theorem”, or the “‘tennis racket theorem”
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For further discussions of rigid bodies, see the lecture notes from 2016/17.



2 Small Oscillations

e Physical systems display equilibrium configurations.

e Equilibrium means that the system remains in that position/configuration indefinitely, when placed

there with no initial velocities.

e When the equilibrium is stable, a small perturbation (i.e. a small kick) results in oscillations about
the equilibrium position.

e To first order approximation, the oscillations are harmonic: single constant-frequency oscillations

independent of amplitude.

e Consider a Lagrangian system described by certain generalized coordinates:

a1
7= : (n degrees of freedom)

dn

— —

= Tl(Qlw--an)

N :TN((]h-“a(Zn)

2.1 Kinetic energy

To discuss oscillations in general systems, let us find the general form of the kinetic energy in terms of ¢.

1L .

. d o .
rkz—m(qh...,qn):Zafqi
PRl

dt
Thus,
1S &K 0 o 1 <&
k k.. _ ..
T = 5 Z Z m’“@- ’ aiqjqiqj =5 Z aij (0)diq;
k=11,5=1 i,j=1
So
1 — .
T'=3 > ai(@dids
i,j=1
where
N
. ory Ork
%@ =2, ™ 3y,

Note that a is symmetric: a;; = aj;.



For the potential we will always assume V = V(q).

e Theorem: The configuration (f =0, §= o is a solution of the Euler-Lagrange equations if

oV
7 P
U lq=a
This is an equilibrium position.
Proof:
The Euler-Lagrange equations are
d oL 0L
—— = —=0
dt 9g  0q

Here because V' does not contain ¢ (which was our assumption),

oL _or
g oq
NOW&t(j:O,JZJO
1 ..
T'= 5ai(@)did; =0
orT )
8T 8ajk ..
9q; 9q; Gt
Therefore,
oL or oV oV .
= = (357~ %7 =0- o= =0 (by assumption)
7 g=go q 17 lg=go 1=
Since we have seen that g—éj = 0, we have that
dor oL _
dt 9g 07

Q.E.D.

2.2 Examples of a;;(q)

2.2.1 Spherical polar coordinates

T= (Jf,y,Z) - (Tvea(b)

x = rsinfcos ¢
y = rsinfsin ¢
z=rcosf

e We could compute a;; using the definition

N aF oF

k k

aij(cijka aq- %
i j

k=1




but in concrete cases like this, it is easy to compute T

T =202 442 + 22) = 2 (52 + r2(62 + sin? 0. 67)

2 2
and read off a;; from it.
¢ Reading off a;;:
m 0 0 T
T==(0 ¢ [ 0 mr? 0 0
0 0 mr’sin®6 10)
From this
m 0 0
a;j(r, 0, ¢) = 0 mr? 0

0 0 mr? sin 0

2.2.2 With a constraint

If we have the constraint r = fixed = [, then the generalized coordinates can be (6, ¢).

mi? . . Loy o mi® 0 /
T _ 2 47 2 2 = - ;
5 (0% + sin” 0 ¢) 2(9 ¢)< 0 mZQSinZG)(Cb)
and thus
ai; = diag(ml?, ml?sin® 0)

2.3 One degree of freedom

1 .
L=T-V= iot(q)q2 - Vig)
Equilibrium: ¢=g¢qo, ¢=0, V'(q)=0

The equilibrium position is stable if ¢ = ¢ is the minimum of the potential, i.e. V" (gg) > 0 (generically).

Let us look at this in more detail. Consider a small fluctuation around g = gy and Taylor-expand the
Lagrangian in
n=4q—4q

Since T is quadratic, we only need to expand the potential up to 2nd order in 7.

1
V(g) =V(q0) +nV'(qo0) +§772VN((J0) +...
~——

vanishes by assumption



V(qo) is an irrelevant constant in the potential. The Lagrangian is

1 . 1 .
L= 5‘1((10)772 - 5772‘/”((10) + const. + O(1°)

Note: we approximated a(q) = a(qp) at this order.

If we set
algp) =m >0

V" (q0) = mw? >0

then the 2nd order Lagrangian is

1
L= 5m1’72 — imw2n2

which is the same as the Lagrangian of a simple harmonic oscillator.

The Euler-Lagrange equation is

i+w?n=0

and
w = V”(Qo)
a(qo)

is the frequency.

The general solution is
n(t) = ¢1 coswt + co sinwt

or equivalently:
n(t) = acos(wt + )

where a is the amplitude and « is the phase:

a=/c?+c%, tana = —ca/cq.

n(t) = Re[Ae™!], A=ae*cC

We can also write this as

A is the complex amplitude.

Since the complex function 7(t) = Ae™? is also a solution to the Euler-Lagrange equation, we can look

t

for a complex solution of the form 1 o ¢! and take the real part at the end of the computation to get a

physical solution. In practice, this is very useful, because the action of derivatives are much simpler on e*?

than on sine and cosine functions.

10



2.4 Summary

e ¢ =0, ¢ = qo is a stable equilibrium position iff V'(gy) = 0 and V" (go) > 0.
e In this case, if we write ¢ = qo + n where 7 is small, then n will do small harmonic oscillations.

e The frequency of oscillations is

V//(qo)

N\ Tala)

e The period is T' = %’T

e If V'(q0) = 0 but V" (qo) <0, then ¢ = qo is an unstable equilibrium position. In this case

V//
W2 = (%) <0
a(qo)
The Euler-Lagrange equation is
i = ¥ =0

which has solutions
n = Ae”l¥lt 1 Betlwlt

This shows a runaway behavior (exponential growth) = instability.
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