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1 Rigid bodies

1.1 Parallel axis theorem

If the axis ny goes through the center of mass, then the moment of inertia about another parallel axes n; is

given by

I, = I, + Ma®

where M is the total mass of the rigid body and «a is the distance between the two axes.

1.1.1 An example: the rod

o If O’ is at the end of the rod:

o If O’ is at the center-of-mass:




We have shifted the axis by a = 1/2:
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Rotation about 2 is not affected.

1.2 Angular momentum

81 . inertial frame

S, : body-fixed frame
) I

(non-inertial)

rigid body

e

The fundamental formula of rigid kinematics:
,5} =R+4+WdxT7;

The angular momentum about O is

Lo =Y pixmify =Y (R+7)xmi(R+dx )
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Let us take O = COM. Then ), m;7; = 0 and we get

Eo:ﬁxMﬁ+Zmiﬁx(di><Fi)

Now using the formula
Ax(BxC)=(A-C)B—(4A-B)C
Withgzézﬁandézw,



The second term can be written as
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Here a,b are vector indices. Thus,
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Compare this with our earlier formula for the angular momentum of a system of particles:
L=RxMR+1T'

We see that Leooas is nothing but L', ie. the angular momentum with respect to the COM (“spin part”)

1.3 Kinetic energy in terms of L

e Recall that for O' = COM,
1 = 1
T = 7MR2 + —w- - Icom@
2 2 = —

Lecom

Thus

1[N 1 =
T=§MR2+§OJ‘LCOM

e For a fixed O’ we have .

Since O’ is fixed, a point P; in the rigid body has velocity

Therefore,

So we have




2 Spinning Tops
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angulor- velocity ©.
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Let us study a more general (3-dimensional) motion of rigid bodies. We immediately face a problem: I 3;
is simple in the body-fixed (non-inertial) frame Sr7, but our formulation has been about an inertial frame
(e.g. Sr). We need to find awa to describe dynamics in the body-fixed frame.

2.1 Rotating frame

Consider some general vector 4. If it is not changing in the moving frame Sy, its rate of change is due only
to the rotation of the frame
du
dt
More generally, if 4 is changing in the moving frame,
di dd
i = E +dxu

change w.r.t.
the moving frame Syr

=dx1u

Let us make this derivation more precise.

Take bases for frames S; and Sy:

S; o« &Y a=1,2,3  (fixed)
Sy o f@ a=1,2,3 (moving)
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A general vector @ can be expanded as

U= u{lé’(“) = uélf_(“)

where ué and uél are the components in S; and Syj, respectively.



The time-derivative is .
i = al&® =T flo) 4o 1T flo)

Since Syj is rotating with angular velocity &,
Flo) = g x flo

and thus
i= G | gl
~—

d'a a
dt

If we define

ury = uj : components in Sy

Then
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We succeeded in expressing dynamics in terms of quantities in the moving frame Sy;.

2.2 Euler equations
Recall:
L= Zﬁ X m1',7'?i
I— Z 7 X ﬁi(e)
In particular, for angular momentum about the COM,
iCOM = (torque about COM) = K

From the above formula,
Lcom,ir +@rr X Leom,rr = Kir
We know that Lcoy = Icom@.

If we take St; to be a principal axis system, then we get

IlbU{I
Leompr = | Lwi!
I3(U3{I
Furthermore,
w{l Ilw{I (IS - I?)“élwél
Grr X Loomar = | Wil | x| Lwll | = (I - B)wilwi!
wif Izwi! (I — I)wifwl!



Thus we have obtained the Euler equations

Ilu'}1 + <I3 — IQ)WQUJg = Kl
Lws + (I — Iwswr = Ks
Iz + (Io — I1)wiwz = K3

Here the index I has been suppressed on w and K.
e These are non-linear differential equations.

e They describe the motion of & in the body-fixed frame with O’ = COM.

The axis about which the rigid body rotates keeps changing in the body-fixed frame.



