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1 Symmetries and conservation laws

1.1 Energy conservation

Assuming the Lagrangian does not depend explicitly on time, we have seen that

H ≡ ~p · ~̇q − L

is conserved. H is called the Hamiltonian.

• If L depends explicitly on t, then we ehave to be more careful with the derivation:

δL = L(~q + δ~q, ~̇q + δ~̇q, t+ δt)− L(~q, ~̇q, t) =
∂L

∂~q
· δ~q +

∂L

∂~̇q
· δ~̇q +

∂L

∂t
δt︸ ︷︷ ︸

extra term

=
d

dt

(
∂L

∂~̇q
· δ~q
)

+
∂L

∂t
δt =

d

dt
δF

Thus we get
d

dt

(
∂L

∂~̇q
· δ~q − δF

)
= −∂L

∂t
δt 6= 0

or
dH

dt
= −∂L

∂t

This means that changing parameters of the system injects/extracts energy.

1.2 The meaning of H

H is nothing but the energy is many cases. Let’s see some examples

(i) If ~q are Cartesian coordinates,

T =
1

2
m~̇r2 and ~p = m~̇r

Then

H = ~p · ~̇q − L = m~̇r · ~̇r −
(

1

2
m~̇r2 − V

)
=

1

2
m~̇r2 + V = E
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(ii) If ~q are generalized coordinates and T is quadratic in q̇i

T =
∑
i,j

1

2
aij(~q)q̇iq̇j

Euler’s theorem on homogeneous functions says1∑
i

∂T

∂q̇i
q̇i = 2T

Hence,

H = ~p · ~̇q − L =
∂L

∂~̇q
· ~̇q − L = 2T − (T − V ) = T + V = E

2 Rigid bodies

A rigid body is a mechanical model for solid bodies with finite size2.

• It is represented by a system of particles such that the distances between the particles do not vary.

|~ri − ~rj | = Cij = const.

• We will often take the a continuum limit in which the number of particles is infinite.

• We want to study rigid bodies using Lagrangian mechanics. This involves:

(i) Finding the #DoFs, and identifying the generalized coordinates

(ii) Finding the kinetic energy T

(iii) Constructing the Lagrangian L = T − V
1f(x) is a homogeneous function of x of degree s if f(ax) = asf(x). In this case, x ∂f

∂x
= sf .

2“Finite” usually means non-zero (not infinitesimal) and not infinitely large either: somewhere in between.
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2.1 Body-fixed frame

To describe the motion of a rigid body, let us introduce a coordinate frame that is fixed to the rigid body

and moves with it.

• SI is an inertial frame (laboratory frame)

• SII is the coordinate system fixed to the rigid body: this is non-inertial.

• The origin O′ of SII is not necessarily the COM of the rigid body.

~ρ︸︷︷︸
position

relative to O

= ~R︸︷︷︸
position
of O′

+ ~r︸︷︷︸
position

relative to O′

• Studying the motion of a rigid body is equivalent to studying the motion of SII with respect to SI .

2.2 The number of degrees of freedom

How many parameters do we need to specify the configuration of SII relative to SI?

(i) The position of O′ relative to O is three parameters:

(ii) Rotating the axes of SII relative to those of SI gives another three parameters (angles)
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Therefore we need

6 parameters = 3 translations + 3 rotations

2.3 Fundamental formula of rigid kinematics

The infinitesimal change of the position P

~ρ = ~R+ ~r

in an infinitesimal time dt is given by

d~ρ = d~R+ d~r

• d~R is a translation of O′ relative to O.

• d~r is a rotation by angle dφ around a certain instantaneous axis n̂ passing through O′

and we have

d~r = n̂dφ× ~r

Plugging this in gives

d~ρ = d~R+ n̂dφ× ~r

Dividing both sides by dt:

~̇ρ = ~̇R+ ~ω × ~r

This is the fundamental formula of rigid kinematics.

• ~̇R is the velocity of O′ relative to O.

• ~ω is the angular velocity of SII about its origin O′:

ω ≡ n̂dφ
dt

• We have decomposed the motion of P as a combination of translational and rotational motions.

• The above equation is a vector equation. Components of the equation may be obtained by projecting

the vectors on the axes of either SI or SII .

• The formula is true for all points of the rigid body. For point Pi

~̇ρi = ~̇R+ ~ω × ~ri

and ~ω is the same for all i. Thus, we can talk about the angular velocity of the rigid body.
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2.4 Kinetic energy

T =
1

2

∑
i

mi~̇ρi
2 =

1

2

∑
i

mi( ~̇R+ ~ω × ~ri)2

=
1

2

∑
i

mi
~̇R2 +

1

2

∑
i

mi(~ω × ~ri)2 +
∑
i

mi
~̇R · (~ω × ~ri)

=
1

2

∑
i

mi
~̇R2 +

1

2

∑
i

mi(~ω × ~ri)2 + ~̇R · (~ω ×
∑
i

mi~ri)︸ ︷︷ ︸
cross term

Two situations in which the cross term vanishes:

(A) If O′ is fixed, e.g. a physical pendulum with suspension point O′. Then,

T =
1

2

∑
i

mi(~ω × ~ri)2

(B) If O′ is the center of mass. In this case,
∑

imi~ri = 0.

T =
1

2

∑
i

mi
~̇R2 +

1

2

∑
i

mi(~ω × ~ri)2

2.5 Components

So far the expressions for T involved vectors and were valid in any frame.

Let us now introduce components of the vectors. The components depend on the reference frame.

~ri =

 ri1
ri2
ri3

 =

 xi
yi
zi



~ω =

 ω1

ω2

ω3


i, j, . . . denote particle number and run over 1 . . . N ,

a, b, . . . denote component number and run over 1, 2, 3 or x, y, z.

At this point we do not specify which frame we are referring to.
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T involves (~ω × ~ri)2. Let us write this quantity in component form. Suppressing the particle number i

and using the Einstein summation convention (i.e. repeated indices are summed over)

(~ω × ~r)2 = (~ω × ~r)a(~ω × ~r)a = εabcωbrcεadeωdre

where we have used ( ~A× ~B)i = εijkAjBk.

What is εabcεade? Note that

εabcεade = ε1bcε1de + ε2bcε2de + ε3bcε3de

The first term is non-vanishing iff

{b, c} = {d, e} = {2, 3}

namely if

(i) (b, c) = (d, e) = (2, 3) this gives +1

(ii) (b, c) = (d, e) = (3, 2) this gives +1

(iii) (b, c) = (e, d) = (2, 3) this gives −1

(iv) (b, c) = (e, d) = (3, 2) this gives −1

and similarly for the 2nd and 3rd terms. These can be summarized in

εabcεade = δbdδce − δbeδcd

Using this result,

(~ω × ~r)2 = ωbrcωbrc − ωbrcωcrb = ~ω2~r2 − (~ω · ~r)2

So for the two cases in which the cross term vanished:

(A)

T =
1

2

∑
i

mi(~ω
2~r2 − (~ω · ~r)2)

This is the rotational energy around the fixed point O′.

(B)

T =
1

2
M ~̇R2 +

1

2

∑
i

mi(~ω
2~r2 − (~ω · ~r)2)

This is the kinetic energy of the COM plus the rotational energy around the COM.
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2.6 Inertia tensor

Let us focus on the rotational part of T :

∑
i

mi(~ω
2~r2i − (~ω · ~ri)2) =

∑
i

miωaωb

(
δab~ri

2 − riarib
)

ωa has no particle index i. Thus, this can be written as

=

[∑
i

mi

(
δab~ri

2 − riarib
)]

︸ ︷︷ ︸
Iab

ωaωb ≡ Iabωaωb = ~ω · I~ω

I is the moment of inertia tensor.

Iab =
∑
i

mi

(
δab~ri

2 − riarib
)

=
∑
i

mi

 y2i + z2i −xiyi −xizi
−xiyi x2i + z2i −yizi
−xizi −yizi x2i + y2i


ab

The inertia tensor is

• symmetric: Iab = Iba

• additive: I{mi} =
∑

i Imi

2.6.1 Expressions for the kinetic energy

So again for the two cases in which the cross term vanished:

(A) If O′ is fixed:

T =
1

2
~ω · IO′~ω

(B) If O′ is the COM:

T =
1

2
M ~̇R2 +

1

2
~ω · ICOM~ω

2.6.2 Continuous version of I

If we regard the rigid body as a continuum,

Iab =
∑
i

mi

(
δab~ri

2 − riarib
)
→

∫
d3x ρ(~x)︸ ︷︷ ︸

dm:mass element

(
δab~x

2 − xaxb
)

Here ρ(~x) is the mass density function for the rigid body.
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2.7 What frame do we use?

The vector ω and the tensor I are defined independently coordinate frames and we can compute their

components in any frame. This is easier in certain frames than in others:

• in SI the ~ri are time-dependent

• in SII the ~ri are time-independent, so we will pick this one.

Henceforth, x, y, z will be taken to be in the body-fixed frame SII . The inertia tensor becomes a purely

geometric quantity inherent to the rigid body. It depends on the mass distribution of the rigid body.
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