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1 The Central Force Problem

As an important application of the Lagrangian formulation of mechanics, let us study the two-body problem

with central forces.

1.1 Reduction to a one-body problem

Consider a system of two particles with masses m, and mo.
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e i1, Ty = there are 6 degrees of freedom
e As generalized coordinates, take:

— COM position R

— difference vector ¥ = 7 — 7
What is the Lagrangian?

Recall the dcomposition of T in many-particle systems (see the end of Lecture 6):
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Thus,
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where p = 72~ is the reduced mass.
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Assume that the potential depends only on the relative position: V' = V(7). Then,
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Note that the COM motion and the relative motion decouple from each other.
Explicitly,
e E-L equation for R:
doL 0L _

—=—=0 = MR =0: trivial inertial motion
dt oR OR

e E-L equation for 7

doL _dL _

. P
Gor o U= —%V(F) : motion of a particle with Lagrangian L,

The two-body problem thus reduces to a one-body problem. The #DoF has been reduced to 3.

1.2 Central force

Now consider just the relative motion described by 7.
Assume V' = V(r) where r = |7].

e The force is central: F||7

e Angular momentum L is conserved

e Motion is planar (since 7 is in a plane perpendicular to I_:) Thus, the #DoF is reduced to 2.



Take polar coordinates (7, ¢) on the plane of motion.
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The Euler-Lagrange equation for ¢:

Claim: py = L.
Proof:

Let’s take the cross-product,

so indeed L, = pg.
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7x 7= (0,0, r2¢)
L=7xpui= (0,0, ur’g)



1.3 Reduction to one-dimensional problem

Energy is conserved,

E=T+V =50+ +V(r)
using ¢ = # from eqn. (1),
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Vet is the effective potential.

e This is the expression for the energy of a particle in one dimension with potential Vg-.

e The 2d problem has been reduced to a 1d problem (#DoF: 6 — 3 — 2 — 1)
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e The extra “force” is

This is nothing but the centrifugal force

The Newton equation is

Note: It would have been incorrect to replace ng in the Lagrangian by (b = # as we did in the formula

for the energy. This would lead to a wrong effective potential V.WRONG(r) = V(1) — - which has the

2ur?
wrong sign for the second term. This is because the Lagrangian formulation assumes that the dynamical

variables are independent (see p. 140 of Hand & Finch).



2 The Kepler Problem

When the central force is the gravitational force, we have the Kepler potential:
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e A qualitative analysis of motion:
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- E=Ey:  equilibHum position.
rE)=r, foralt —> Circular orbit "



e What are g and Ey? At the equilibrium position r = rg, the total force is zero:
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2.1 The orbits

Let us now solve for the orbits. They will be a function r = r(¢) (there is no need for t). First of all, we
have a conserved energy:
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From this we can express r:
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We can eliminate time if we take the ratio:
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Integrating this gives
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We have to do this integral. Complete the square for 1/r and use the expressions for ro and Ey to get

p(ra) — p(r1) /2dr\/
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. Then dx = — % and we have
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Denote z = - — =
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Let us now take the zero point of ¢ such that ¢(r;) = 0. Also, write 7 instead of r5. We get the equation
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Using this, the square root can be re-written as
2u 1 E
(E — Ey) = —,/1—-— =
l2 O ) T0 EO
and equation (2) becomes
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where the eccentricity ¢ is defined as
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Note that Ej is negative.



