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1 The Central Force Problem

As an important application of the Lagrangian formulation of mechanics, let us study the two-body problem

with central forces.

1.1 Reduction to a one-body problem

Consider a system of two particles with masses m1 and m2.

• ~r1, ~r2 ⇒ there are 6 degrees of freedom

• As generalized coordinates, take:

– COM position ~R

– difference vector ~r ≡ ~r2 − ~r1

What is the Lagrangian?

Recall the dcomposition of T in many-particle systems (see the end of Lecture 6):

T =
1

2
M ~̇R2︸ ︷︷ ︸
COM

+

N∑
i=1

1

2
mi~̇ri

′2

︸ ︷︷ ︸
relative to COM

For two particles,

~r1
′ = ~r1 − ~R = ~r1 −

m1~r1 +m2~r2

m1 +m2
= −m2(~r2 − ~r1)

m1 +m2
= − m2

m1 +m2
~r

~r2
′ = ~r2 − ~R = ~r2 −

m1~r1 +m2~r2

m1 +m2
=
m1(~r2 − ~r1)

m1 +m2
=

m1

m1 +m2
~r
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Thus,

T =
1

2
M ~̇R2 +

1

2
m1

(
− m2

m1 +m2
~̇r

)2

+
1

2
m2

(
m1

m1 +m2
~̇r

)2

=
1

2
M ~̇R2 +

1

2

m1m2

m1 +m2
~̇r2

and we get

T =
1

2
M ~̇R2 +

1

2
µ~̇r2

where µ ≡ m1m2

m1+m2
is the reduced mass.

Assume that the potential depends only on the relative position: V = V (~r). Then,

Ltotal =
1

2
M ~̇R2︸ ︷︷ ︸

LCOM( ~̇R)

+
1

2
µ~̇r2 − V (~r)︸ ︷︷ ︸
Lrel(~r,~̇r)

Note that the COM motion and the relative motion decouple from each other.

Explicitly,

• E-L equation for ~R:

d

dt

∂L

∂ ~̇R
=
∂L

∂ ~R
= 0 ⇒ M ~̈R = 0 : trivial inertial motion

• E-L equation for ~r:

d

dt

∂L

∂~̇r
=
∂L

∂~r
= 0 ⇒ µ~̈r = − ∂

∂~r
V (~r) : motion of a particle with Lagrangian Lrel

The two-body problem thus reduces to a one-body problem. The #DoF has been reduced to 3.

1.2 Central force

Now consider just the relative motion described by ~r.

Assume V = V (r) where r ≡ |~r|.

• The force is central: ~F ||~r
~F = −∂V

∂~r
= −V ′(r)r̂

• Angular momentum ~L is conserved

• Motion is planar (since ~r is in a plane perpendicular to ~L). Thus, the #DoF is reduced to 2.
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Take polar coordinates (r, φ) on the plane of motion.

L = T − V =
1

2
µ(ṙ2 + r2φ̇2)− V (r)

The Euler-Lagrange equation for φ:

d

dt

∂L

∂φ̇︸︷︷︸
pφ

=
∂L

∂φ
= 0 ⇒ ṗφ = 0

pφ = µr2φ̇ = const. ≡ l (1)

Claim: pφ = Lz.

Proof:

~r = (r cosφ, r sinφ, 0)

~̇r = (ṙ cosφ− r sinφ φ̇, ṙ sinφ+ r cosφ φ̇, 0)

Let’s take the cross-product,

~r × ~̇r = (0, 0, r2φ̇)

~L = ~r × µ~̇r = (0, 0, µr2φ̇)

so indeed Lz = pφ.
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1.3 Reduction to one-dimensional problem

Energy is conserved,

E = T + V =
µ

2
(ṙ2 + r2φ̇2) + V (r)

using φ̇ = l
µr2 from eqn. (1),

E =
1

2
µṙ2 +

1

2
µr2

(
l

µr2

)2

+ V (r) =
1

2
µṙ2 +

l2

2µr2
+ V (r)

or

E =
1

2
µṙ2 + Veff(r) Veff(r) = V (r) +

l2

2µr2

Veff is the effective potential.

• This is the expression for the energy of a particle in one dimension with potential Veff.

• The 2d problem has been reduced to a 1d problem (#DoF: 6→ 3→ 2→ 1)

• The extra “force” is

− d

dr

(
l2

2µr2

)
=

l2

µr3

This is nothing but the centrifugal force

Fcf =
µv2

r
, v = rφ̇ =

l

µr
⇒ Fcf =

l2

µr3

The Newton equation is

µr̈ =
l2

µr3
− V ′(r)

Note: It would have been incorrect to replace φ̇ in the Lagrangian by φ̇ = l
µr2 as we did in the formula

for the energy. This would lead to a wrong effective potential V WRONG
eff (r) = V (r) − l2

2µr2 which has the

wrong sign for the second term. This is because the Lagrangian formulation assumes that the dynamical

variables are independent (see p. 140 of Hand & Finch).
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2 The Kepler Problem

When the central force is the gravitational force, we have the Kepler potential:

V (r) = −Gm1m2

r
≡ −k

r
k ≡ Gm1m2 > 0

Veff =
l2

2µr2
− k

r

• A qualitative analysis of motion:
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• What are r0 and E0? At the equilibrium position r = r0, the total force is zero:

F = −V ′
eff(r0) = − l2

µr3
0

+
k

r2
0

= 0

which gives

r0 =
l2

µk

Plugging this result back into the effective potential, we get

E0 =
l2

2µr2
0

− k

r0
= −1

2

µk2

l2

E0 = −µk
2

2l2
< 0

2.1 The orbits

Let us now solve for the orbits. They will be a function r = r(φ) (there is no need for t). First of all, we

have a conserved energy:

E =
1

2
µṙ2 +

l

2µr2
− k

r

From this we can express ṙ:

ṙ =

√
2

µ

(
E − l2

2µr2
+
k

r

)
We also have

φ̇ =
l

µr2

We can eliminate time if we take the ratio:

dφ

dr
=

(
dφ
dt

)
(
dr
dt

) =
φ̇

ṙ
=

l

µr2

1√
2
µ

(
E − l2

2µr2 + k
r

)
Integrating this gives

φ(r2)− φ(r1) =

∫ r2

r1

l

µr2

1√
2
µ

(
E − l2

2µr2 + k
r

)
We have to do this integral. Complete the square for 1/r and use the expressions for r0 and E0 to get

φ(r2)− φ(r1) =

∫ r2

r1

dr

r2

1√
2µ
l2 (E − E0)−

(
1
r −

1
r0

)2
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Denote x ≡ 1
r −

1
r0

. Then dx = −drr2 and we have

φ(r2)− φ(r1) = −
∫ x2

x1

dx√
2µ
l2 (E − E0)− x2

= arccos

 x√
2µ
l2 (E − E0)

∣∣∣∣∣∣
x2

x1

= arccos

 1
r −

1
r0√

2µ
l2 (E − E0)

∣∣∣∣∣∣
r2

r1

Let us now take the zero point of φ such that φ(r1) = 0. Also, write r instead of r2. We get the equation√
2µ

l2
(E − E0) cosφ =

1

r
− 1

r0
(2)

Here
2µ

l2
E0 =

2µ

l2

(
−µk

2

2l2

)
= − 1

r2
0

So
2µ

l2
= − 1

r2
0E0

Using this, the square root can be re-written as√
2µ

l2
(E − E0) =

√
− 1

r2
0E0

(E − E0) =
1

r0

√
1− E

E0

and equation (2) becomes

r =
r0

1 + ε cosφ

where the eccentricity ε is defined as

ε ≡
√

1− E

E0

Note that E0 is negative.
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