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1 Lagrangian mechanics

1.1 Example: Atwood’s machine

Invented by George Atwood in 1784 to verify the mechanical law of motion with constant acceleration.
e Constraint: 1 + x5 =0
e 1 degree of freedom

e generalized coordinate: x = x1 = —a9

1 1 1
T = 57’711.’5? =+ 57712.%’% = §(m1 + mz).’i‘z

V = mygxy + magre = (M1 — ma)gx
1
L=T-V= §(m1 +mg)d? — (my — ma)ga

The Euler-Lagrange equation:

DI OL — (ma +ma)i (1 —ma)g = 0
dt 0t 8x_m1 M2)% T T m2)g =
and thus
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No constraint forces (tension) appear.



1.2 Example: A bead sliding on a uniformly rotating wire

An example of time-dependent constraints.

e Constraint: § = wt  (this is time-dependent!)
e 1 degree of freedom

e generalised coordinate: r

T = rcoswt
Yy =rsinwt

Using the expression for T in polar coordinates,
L oo 24 L o, 22
Tzim(r + 70 ):im(r + r<w?)

Note that this is not quadratic in 7.

If there are no other forces, L = T. The E-L equations are

doL oL e,
ator or YT
P = rw?
r=roe’t

This means that the bead moves exponentially outward.
e Again no constraint force appears in the equation.

e The constraint force is not perpendicular to the motion, and thus it does work on the bead (energy is
not conserved).



2 Curvilinear coordinates

Let us recall a few examples for curvilinear coordinate systems. These will be useful as generalised coordi-

nates.

2.1 Polar coordinates

T= %mf‘z = —m(r? + r2q52)
2.2 Spherical coordinates
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7= (z,y, z) = r(sind cos ¢, sinfsin ¢, cos )

0elo,n] - polar angle (colatitude)
¢ €1[0,2m] azimuthal angle



e Components of the hatted vectors are
7 = (sin 6 cos ¢, sin O sin ¢, cos 6)
Take the 0 derivative of this to get
0 = (cos 0 cos ¢, cosfsin ¢, —sin )

Finally,
¢ = (=sing, cos ¢, 0)

One can check that the vectors are orthonormal:

<

FO=F-¢p=0-$=0
and that 7 - (é X QAS) = 41, i.e. they form a right-handed frame.

e In the kinetic term 7 shows up which we need to compute

L o, or, Or,
F=—r+_=—0+—

or 00 0¢
We can find expressions for the partial derivatives using the hatted vectors
or or A or -
5= a5 =rh a—;:rsinﬁqﬁ

Plugging these back in gives
7 =77+ r00 + rsin 6 ¢p¢p

and

_ Mz M (.2 242 - 29 52
T = = > (r + 72(6° + sin 9(;5))

e The conjugate momenta are

oo
Pr="50 =97 ~
oL  OT y
Po="%6 06"
p¢:8—;:8—r:mr2sin29gﬁ
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e Angular momentum (about origin)

L =mF x ¥ =mrf x (fﬁ+r9é+rsin9¢5g{)) :mrz(éf X 0+sinf ¢ 7 x gzg) = mr?0¢ — mr?sin 6 ¢0

é -0
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So L, = pg and it is conserved if ¢ is cyclic.



2.3 Cylindrical coordinates

where

2
2l s
. R ek
I A
> !
r '
'
£ : a‘,
Fopd
7= (pcos¢, psing, z)
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7= a—gz (cos ¢, sin ¢, 0)
b= %iz (—sin ¢, cos @, 0)

9% — (0,0, 1)

These three vectors form a right-handed orthonormal basis.

T =

N
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mr? = om(d® + 47 + %) = Sm(p® + p?6" + %)

The conjugate momenta are

L, is conserved if ¢ is cyclic.
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Let us look at some examples of Lagrangian mechanics using these coordinate systems.

2.4 Example: A free particle in spherical coordinates

L=T= %(7‘2 + r2(62 + sin? 0 $?))

The Euler-Lagrange equations

* forr: doL L
dtoi ~ or
%(mf) = mi* = mr(0% + sin® 0 ¢?)
o for 0: 4 0L oL
dt o9~ 90
i(mﬁé) = mr? sin f cos 0 ¢
dt
 foro: doL OL
——=—=0 cyclic coordinate
dt 9¢ 09

d ) )
—(mr?sin?0¢) =0 = Dy = mr? sin® 6 ¢ = const.

dt
2.5 Example: A free particle in cylindrical coordinates
L=T= %m(ﬁﬁ + 00+ £%)

The Euler-Lagrange equations

e for z:

oL _
0z

thus the linear momentum along z is constant:

0 cyclic coordinate

p, = mz = const.

 forp d oL 0L
atop — dp
mp= mp’
centrifugal force
o for ¢: Lol oL
——=—=0 cyclic coordinate
dt 9¢ 09

Dy = mpgq'ﬁ = const. =1



Plugging this into the E-L equation for p,

1 \? 2

The RHS is the centrifugal force.

3 The Central Force Problem

As an important application of the Lagrangian formulation of mechanics, let us study the two-body problem
with central forces.

3.1 Reduction to a one-body problem

Consider a system of two particles with masses m, and mo.
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e 71, 7o = there are 6 degrees of freedom
e As generalized coordinates, take:

— COM position R

— difference vector ¥ =75 — 7
What is the Lagrangian?

Recall the dcomposition of T in many-particle systems (see the end of Lecture 6):

1 : N
_ 2 } : =12
T = §MR + §m7(7"1

i=1

COM
relative to COM
For two particles,
L,z . mufid+mory  ma(th—71) my
11=r—R=m— =- = — 7
mi + mo my + me mi + mso
L, o= omuTi+mery  omy(Ta—71)  omy
o =Ty — R=175 — = = T
mi + Mo my + mo my + me



Thus,

1. = 1 me  -\> 1 mi -\° 1. % 1 mymg -
P Lt o (A L () Ly L

2 2 mi + mo 2 mi + mo 2 2m1+m2
and we get
Iy 2
where p = 72~ is the reduced mass.
1+ma2

Assume that the potential depends only on the relative position: V' = V(7). Then,

1 = 1 .
Liotal = §MR2 aF EILT_'Q — V(F)
| —
LCOM(ﬁ) Lrel(ﬁ?)

Note that the COM motion and the relative motion decouple from each other.
Explicitly,
e E-L equation for R:
doL 0L _

—=—=0 = MR =0: trivial inertial motion
dt oR OR

e E-L equation for 7

doL _dL _

. P
Gor o U= —%V(F) : motion of a particle with Lagrangian L,

The two-body problem thus reduces to a one-body problem. The #DoF has been reduced to 3.

3.2 Central force

Now consider just the relative motion described by 7.
Assume V' = V(r) where r = |7].

e The force is central: F||7

e Angular momentum L is conserved

e Motion is planar (since 7 is in a plane perpendicular to I_:) Thus, the #DoF is reduced to 2.



Take polar coordinates (7, ¢) on the plane of motion.

—_—

’;:||L—_7=wsf.

L=T-V= %/J(?'"2 +1r2¢%) —V(r)

The Euler-Lagrange equation for ¢:

Claim: py = L.
Proof:

Let’s take the cross-product,

so indeed L, = pg.
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p¢:,u7'2¢i=const.zl (1)

7= (rcos¢, rsing, 0)

7= (fcosqi)—rsind)é, Fsing + rcos ¢ ¢, 0)

7x 7= (0,0, r2¢)
L=7xpui= (0,0, ur’g)



3.3 Reduction to one-dimensional problem

Energy is conserved,

E=T+V =50+ +V(r)
using ¢ = # from eqn. (1),
1 1 1\’ 1 12
E= 2+ Zu? = = Z 52
G+ S hr (l“"2> +V(r) AT+ S +V(r)

or

1
B = gui® +Ver(r)  Vear) = V() +

Vet is the effective potential.

e This is the expression for the energy of a particle in one dimension with potential Vg-.

e The 2d problem has been reduced to a 1d problem (#DoF: 6 — 3 — 2 — 1)

_d(eN_2
dr \2ur? ) pr3

e The extra “force” is

This is nothing but the centrifugal force

The Newton equation is

Note: It would have been incorrect to replace ng in the Lagrangian by (b = # as we did in the formula

for the energy. This would lead to a wrong effective potential V.WRONG(r) = V(1) — - which has the

2ur?
wrong sign for the second term. This is because the Lagrangian formulation assumes that the dynamical

variables are independent (see p. 140 of Hand & Finch).
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