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1 Lagrangian mechanics

1.1 Example: Atwood’s machine

Invented by George Atwood in 1784 to verify the mechanical law of motion with constant acceleration.

• Constraint: x1 + x2 = 0

• 1 degree of freedom

• generalized coordinate: x ≡ x1 = −x2

T =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 =

1

2
(m1 +m2)ẋ2

V = m1gx1 +m2gx2 = (m1 −m2)gx

L = T − V =
1

2
(m1 +m2)ẋ2 − (m1 −m2)gx

The Euler-Lagrange equation:

d

dt

∂L

∂ẋ
− ∂L

∂x
= (m1 +m2)ẍ+ (m1 −m2)g = 0

and thus

ẍ = −m1 −m2

m1 +m2
g

No constraint forces (tension) appear.
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1.2 Example: A bead sliding on a uniformly rotating wire

An example of time-dependent constraints.

• Constraint: θ = ωt (this is time-dependent!)

• 1 degree of freedom

• generalised coordinate: r

{
x = r cosωt

y = r sinωt

Using the expression for T in polar coordinates,

T =
1

2
m(ṙ2 + r2θ̇2) =

1

2
m(ṙ2 + r2ω2)

Note that this is not quadratic in ṙ.

If there are no other forces, L = T . The E-L equations are

d

dt

∂L

∂ṙ
− ∂L

∂r
= mr̈ −mrω2 = 0

r̈ = rω2

r = r0e
ωt

This means that the bead moves exponentially outward.

• Again no constraint force appears in the equation.

• The constraint force is not perpendicular to the motion, and thus it does work on the bead (energy is

not conserved).

2



2 Curvilinear coordinates

Let us recall a few examples for curvilinear coordinate systems. These will be useful as generalised coordi-

nates.

2.1 Polar coordinates

We have already seen this example in Lecture 9.

T =
1

2
m~̇r2 =

1

2
m(ṙ2 + r2φ̇2)

2.2 Spherical coordinates

~r = (x, y, z) = r(sin θ cosφ, sin θ sinφ, cos θ)

θ ∈ [0, π] : polar angle (colatitude)

φ ∈ [0, 2π] : azimuthal angle
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• Components of the hatted vectors are

r̂ = (sin θ cosφ, sin θ sinφ, cos θ)

Take the θ derivative of this to get

θ̂ = (cos θ cosφ, cos θ sinφ, − sin θ)

Finally,

φ̂ = (− sinφ, cosφ, 0)

One can check that the vectors are orthonormal:

r̂2 = θ̂2 = φ̂2 = 1

r̂ · θ̂ = r̂ · φ̂ = θ̂ · φ̂ = 0

and that r̂ · (θ̂ × φ̂) = +1, i.e. they form a right-handed frame.

• In the kinetic term ~̇r shows up which we need to compute

~̇r =
∂~r

∂r
ṙ +

∂~r

∂θ
θ̇ +

∂~r

∂φ
φ̇

We can find expressions for the partial derivatives using the hatted vectors

∂~r

∂r
= r̂,

∂~r

∂θ
= rθ̂,

∂~r

∂φ
= r sin θ φ̂

Plugging these back in gives

~̇r = ṙr̂ + rθ̇θ̂ + r sin θ φ̇φ̂

and

T =
m

2
~̇r2 =

m

2

(
ṙ2 + r2(θ̇2 + sin2 θ φ̇2)

)
• The conjugate momenta are

pr =
∂L

∂ṙ
=
∂T

∂ṙ
= mṙ

pθ =
∂L

∂θ̇
=
∂T

∂θ̇
= mr2θ̇

pφ =
∂L

∂φ̇
=
∂T

∂φ̇
= mr2 sin2 θ φ̇

• Angular momentum (about origin)

~L = m~r × ~̇r = mrr̂ × (ṙr̂ + rθ̇θ̂ + r sin θ φ̇φ̂) = mr2(θ̇ r̂ × θ̂︸ ︷︷ ︸
φ̂

+ sin θ φ̇ r̂ × φ̂︸ ︷︷ ︸
−θ̂

) = mr2θ̇φ̂−mr2 sin θ φ̇θ̂

Lz = ~L · ẑ = mr2θ̇ φ̂ · ẑ︸︷︷︸
0

−mr2 sin θ φ̇ θ̂ · ẑ︸︷︷︸
− sin θ

= mr2 sin2 θ φ̇

So Lz = pφ and it is conserved if φ is cyclic.
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2.3 Cylindrical coordinates

~r = (ρ cosφ, ρ sinφ, z)

~̇r =
∂~r

∂ρ
ρ̇+

∂~r

∂φ
φ̇+

∂~r

∂z
ż = ρ̂ρ̇+ ρφ̂φ̇+ ẑż

where

r̂ = ∂~r
∂ρ = (cosφ, sinφ, 0)

φ̂ = 1
ρ
∂~r
∂φ = (− sinφ, cosφ, 0)

ẑ = ∂~r
∂z = (0, 0, 1)

These three vectors form a right-handed orthonormal basis.

T =
1

2
m~̇r2 =

1

2
m(ẋ2 + ẏ2 + ż2) =

1

2
m(ρ̇2 + ρ2φ̇2 + ż2)

The conjugate momenta are

pρ =
∂L

∂ρ̇
= mρ̇

pφ =
∂L

∂φ̇
= mρ2φ̇

pz =
∂L

∂ż
= mż

~L = m~r × ~̇r = m(ρρ̂+ zẑ)× (ρ̂ρ̇+ ρφ̂φ̇+ ẑż) = m(ρ2φ̇ ρ̂× φ̂︸ ︷︷ ︸
ẑ

+ρż ρ̂× ẑ︸ ︷︷ ︸
−φ̂

+zρ̇ ẑ × ρ̂︸ ︷︷ ︸
φ̂

+zρφ̇ ẑ × φ̂︸ ︷︷ ︸
−ρ̂

)

~L = mρ2φ̇ẑ +m(zρ̇− ρż)φ̂−mρzφ̇ρ̂
Lz = ~L · ẑ = mρ2φ̇ = pφ

Lz is conserved if φ is cyclic.
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Let us look at some examples of Lagrangian mechanics using these coordinate systems.

2.4 Example: A free particle in spherical coordinates

L = T =
m

2
(ṙ2 + r2(θ̇2 + sin2 θ φ̇2))

The Euler-Lagrange equations

• for r:
d

dt

∂L

∂ṙ
=
∂L

∂r

d

dt
(mṙ) = mr̈ = mr(θ̇2 + sin2 θ φ̇2)

• for θ:
d

dt

∂L

∂θ̇
=
∂L

∂θ

d

dt
(mr2θ̇) = mr2 sin θ cos θ φ̇2

• for φ:
d

dt

∂L

∂φ̇
=
∂L

∂φ
= 0 cyclic coordinate

d

dt
(mr2 sin2 θ φ̇) = 0 ⇒ pφ = mr2 sin2 θ φ̇ = const.

2.5 Example: A free particle in cylindrical coordinates

L = T =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2)

The Euler-Lagrange equations

• for z:
∂L

∂z
= 0 cyclic coordinate

thus the linear momentum along z is constant:

pz = mż = const.

• for ρ:
d

dt

∂L

∂ρ̇
=
∂L

∂ρ

mρ̈ = mρφ̇2︸ ︷︷ ︸
centrifugal force

• for φ:
d

dt

∂L

∂φ̇
=
∂L

∂φ
= 0 cyclic coordinate

pφ = mρ2φ̇ = const. ≡ l
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Plugging this into the E-L equation for ρ,

mρ̈ = mρ

(
l

mρ2

)2

=
l2

mρ3

The RHS is the centrifugal force.

3 The Central Force Problem

As an important application of the Lagrangian formulation of mechanics, let us study the two-body problem

with central forces.

3.1 Reduction to a one-body problem

Consider a system of two particles with masses m1 and m2.

• ~r1, ~r2 ⇒ there are 6 degrees of freedom

• As generalized coordinates, take:

– COM position ~R

– difference vector ~r ≡ ~r2 − ~r1

What is the Lagrangian?

Recall the dcomposition of T in many-particle systems (see the end of Lecture 6):

T =
1

2
M ~̇R2︸ ︷︷ ︸
COM

+

N∑
i=1

1

2
mi~̇ri

′2

︸ ︷︷ ︸
relative to COM

For two particles,

~r1
′ = ~r1 − ~R = ~r1 −

m1~r1 +m2~r2

m1 +m2
= −m2(~r2 − ~r1)

m1 +m2
= − m2

m1 +m2
~r

~r2
′ = ~r2 − ~R = ~r2 −

m1~r1 +m2~r2

m1 +m2
=
m1(~r2 − ~r1)

m1 +m2
=

m1

m1 +m2
~r
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Thus,

T =
1

2
M ~̇R2 +

1

2
m1

(
− m2

m1 +m2
~̇r

)2

+
1

2
m2

(
m1

m1 +m2
~̇r

)2

=
1

2
M ~̇R2 +

1

2

m1m2

m1 +m2
~̇r2

and we get

T =
1

2
M ~̇R2 +

1

2
µ~̇r2

where µ ≡ m1m2

m1+m2
is the reduced mass.

Assume that the potential depends only on the relative position: V = V (~r). Then,

Ltotal =
1

2
M ~̇R2︸ ︷︷ ︸

LCOM( ~̇R)

+
1

2
µ~̇r2 − V (~r)︸ ︷︷ ︸
Lrel(~r,~̇r)

Note that the COM motion and the relative motion decouple from each other.

Explicitly,

• E-L equation for ~R:

d

dt

∂L

∂ ~̇R
=
∂L

∂ ~R
= 0 ⇒ M ~̈R = 0 : trivial inertial motion

• E-L equation for ~r:

d

dt

∂L

∂~̇r
=
∂L

∂~r
= 0 ⇒ µ~̈r = − ∂

∂~r
V (~r) : motion of a particle with Lagrangian Lrel

The two-body problem thus reduces to a one-body problem. The #DoF has been reduced to 3.

3.2 Central force

Now consider just the relative motion described by ~r.

Assume V = V (r) where r ≡ |~r|.

• The force is central: ~F ||~r
~F = −∂V

∂~r
= −V ′(r)r̂

• Angular momentum ~L is conserved

• Motion is planar (since ~r is in a plane perpendicular to ~L). Thus, the #DoF is reduced to 2.
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Take polar coordinates (r, φ) on the plane of motion.

L = T − V =
1

2
µ(ṙ2 + r2φ̇2)− V (r)

The Euler-Lagrange equation for φ:

d

dt

∂L

∂φ̇︸︷︷︸
pφ

=
∂L

∂φ
= 0 ⇒ ṗφ = 0

pφ = µr2φ̇ = const. ≡ l (1)

Claim: pφ = Lz.

Proof:

~r = (r cosφ, r sinφ, 0)

~̇r = (ṙ cosφ− r sinφ φ̇, ṙ sinφ+ r cosφ φ̇, 0)

Let’s take the cross-product,

~r × ~̇r = (0, 0, r2φ̇)

~L = ~r × µ~̇r = (0, 0, µr2φ̇)

so indeed Lz = pφ.
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3.3 Reduction to one-dimensional problem

Energy is conserved,

E = T + V =
µ

2
(ṙ2 + r2φ̇2) + V (r)

using φ̇ = l
µr2 from eqn. (1),

E =
1

2
µṙ2 +

1

2
µr2

(
l

µr2

)2

+ V (r) =
1

2
µṙ2 +

l2

2µr2
+ V (r)

or

E =
1

2
µṙ2 + Veff(r) Veff(r) = V (r) +

l2

2µr2

Veff is the effective potential.

• This is the expression for the energy of a particle in one dimension with potential Veff.

• The 2d problem has been reduced to a 1d problem (#DoF: 6→ 3→ 2→ 1)

• The extra “force” is

− d

dr

(
l2

2µr2

)
=

l2

µr3

This is nothing but the centrifugal force

Fcf =
µv2

r
, v = rφ̇ =

l

µr
⇒ Fcf =

l2

µr3

The Newton equation is

µr̈ =
l2

µr3
− V ′(r)

Note: It would have been incorrect to replace φ̇ in the Lagrangian by φ̇ = l
µr2 as we did in the formula

for the energy. This would lead to a wrong effective potential V WRONG
eff (r) = V (r) − l2

2µr2 which has the

wrong sign for the second term. This is because the Lagrangian formulation assumes that the dynamical

variables are independent (see p. 140 of Hand & Finch).
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