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1 Lagrangian mechanics

1.1 Example: The planar pendulum
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The purpose of this section is to:

(i) see the power of the Lagrangian approach

(ii) demonstrate that the variational principle works for constrained systems

1.1.1 Newtonian approach

p=mj+N
Components:
mi = —Nsin¢
my = mg — N cos ¢
where N = |N|.

N is a constraint force. It is perpendicular to the motion = does no work = energy is conserved.

Relation between the Cartesian coordinates (x,y) and ¢:

{ r=Ilsing é{ i = l(cos @) é{ i = 1(+cos ¢ d — sin ¢ ¢?)

y = 1lcos ¢ § = —l(sing) i =1l(—sinp ¢ — cos ¢ $?)

Plug these into the equation of motion:

ml(cosgzﬁg% - sinqﬁgﬁQ) = —Nsin¢
{ ml(—sing ¢ — cos ¢ ¢?) = mg — N cos ¢



Multiply the first equation by cos ¢ and the second equation by sin ¢, then subtract the two equations from
each other to eliminate N. We get

g.ﬁ.: —%sind)

N can be expressed
l s o '
N:m(COS(ﬁd)' sin ¢ ¢*) — mgcosd + mid?
—sin¢ —_——

counter gravity  centripetal force

We had to introduce a constraint force N. We also needed the EOMs for = and y to derive an EOM for ¢.

1.1.2 Lagrangian approach

There is one (holonomic) constraint: r = [. Thus, there is 1 degree of freedom. We can use ¢ as the
generalised coordinate.

x =1lsin¢ = l(cos )¢
{ y=1lcos¢ = ¥y = —l(sin QS)(;S

¢ Kinetic energy

Plug the above expressions for & and ¢ in the Cartesian formula:

1 1 .

T = —m(i® +3°) = =mi*¢”
2 2
Alternatively, we can start with the kinetic energy expressed in polar coordinates, and then set r = [, 7 = 0:
I SRR ST N S
T =—-m(r*+1r°¢) = -ml¢
2 2

¢ Potential energy

V = —mgy = —mgl cos ¢ (the y axis is pointing downwards!)

e Lagrangian

1 .
L=T-V= §ml2¢2+mglcos¢

The momentum conjugate to ¢:

oL .
= — = le
Po = 5 ¢
The Euler-Lagrange equation
doL oL
dt o¢ 0

gives
ml?¢ = —mglsin ¢

b= —%sinq&




e This derivation is much simpler and more straightforward than the old Newtonian method:

(i) N never appeared.

(ii) Directly got the equation of motion for ¢.

e The energy F =T + V is conserved. (Check it)
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® py is angular momentum

-

L=7xmr

Ll =1-m\/@% + g2 =1-mi|$| = py]

Therefore
lpg| = |L]



2 Constraints

e Holonomic constraints
Constraints that can be written in the form of
fl(Fl,...,FN,t> - 0
fa(Fr, .o Pt 0 )
. h equations —  reduce the #DoF from 3N to 3N —h=n

(L, .. TN, t) =0

I'v Motion is restricted to be in an
n-dimensional configuration manifold
embedded in the 3N-dimensional space

of Fi,... 7y
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The constraint equations can be solved in therms of n independent variables
j: (Qh s 7qn)
These are the generalised coordinates.

— —

1= 1(q17"'aqn)

— —

TN:TN((]laH-aQn)

e Non-holonomic constraints

These are all other types of constraints which are not holonomic.



2.1 Examples for holonomic constraints
2.1.1 The planar pendulum

The constraint equation is
f=2+4*-1?=0

This can be solved using the generalised coordinate ¢ as

x =Isin¢ y =1lcos¢
2.1.2 Rigid bodies
|7 = 75| —cij =0

2.1.3 A disk rolling without slipping in one dimension
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No slipping means dz = Rd¢, or if we divide both sides by dt,
i = Ré (1)

This can be integrated to give
T = R¢ + const.

which is holonomic. We can use either x or ¢ as the generalised coordinate.
2.2 Examples for non-holonomic constraints
2.2.1 A disk rolling without slipping in higher dimensions

In higher dimensions, the analog of (1) cannot be integrated and the constraint is therefore non-holonomic
(see Goldstein et al. p15-16).

2.2.2 Other examples
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2.3 Variational calculus with constraints

re) e M

T+ 8,76 =M

to .
S= [ dtL(F

ty
Find the extremum as before. Now the variation is restricted to be in M:

t2 : 2 (9L oL . - 2 (0L dOL
= = L r = —_ r _— r| = _ T
0=0pS=0m /t1 dt (T‘,’F) . dt (8F6MT + 877'6]MT> /tl dt <87_" o 877') O\

This is the same result as in the unconstrained case, except we have 0,7 instead of 7. From this result
we cannot conclude that the Euler-Lagrange equation inside the parentheses vanishes, because d;7 is not
completely arbitrary: it is constrained to lie in the tangent space of M.

Tangent Space
normal of M at Pet)

So the above result does not put any constraint on the normal component and we get the equation

d 9L L

oL 9L _
dt o7  OFr

where N is a constraint force perependicular to M.



2.4 Procedure for solving problems with holonomic constraints
(i) Determine the configuration manifold (e.g. % + y? = [?) and introduce generalised coordinates on it:

{¢;}, i=1,2,...,n where n is the #DoF

(ii) Re-express the kinetic energy T in terms of ¢ and q

If the constraints are time-independent and 7; = 7;(§), then T is quadratic in q

1 ..
T = Z §aij(§')q¢qj
2,7

E.g. planar pendulum: ¢ = ¢ and T = % ml? q52

——
a(¢)
(iii) Construct the Lagrangian
L=T-V(Q
and solve the Euler-Lagrange equations
d oL 0L
A = , 1=1,2...,n
dt 9¢;  Og



