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1 Many particles

1.1 Conservative forces
1.1.1 External forces

Assume external forces are conservative:

F = =V Vi(7)
where 61 is the gradient with respect to 77;.

The work done by external forces:
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1.1.2 Internal forces

Assuming the strong law of action and reaction, the force on particle i exerted by particle j can be written
as:
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and f;; = f;; is some scalar function.

e Now if f;; depends only on the relative distance |7;;| (we will assume this henceforth), then F;j is
automatically conservative.

Proof:
Define the potential
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Then by the chain rule
—ViVji = = f5:(|75:) Vil 754l

Here
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This means that

Q.E.D.



Remark: We have V;; = Vj;. Then the stong law F;J = —ﬁji comes from antisymmetry of

Vilfisl = Vilfi = 751 = =V|7i = 75| = = V517

Let us now compute the work done by internal forces.
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Use V;; = Vj; and relabel dummy variables (i <> j) to get
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Now we can define
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to write
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Including the external part, the total work is

W = Wext + Wing = — ZV;‘F%ZW]
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This is independent of the path (as in the single-particle case).
Recall that W = [3, Tlﬁ Hence, the total energy E is conserved:

E=YTit+ S Vit 3V
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total potential energy

The last term (the internal potential energy) can also be written as 3 Y, i Viig =221 Vig



1.2 Rigid bodies

A rigid body is a system of particles for which |7;| = const.

e For a rigid body, the internal potential energy is constant in time.
Hence, no work is done by internal forces.

e A rigid body is an example for a holonomic constraint. Such constraints are of the form
fK(Fla"'aFNvt) =0
2 Lagrangian mechanics

2.1 Calculus of variations

A functional is a function of a function.
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Given a function y(z), a number is determined: F[y].

2.1.1 Example: length of a curve

In this example, the functional is the length of a curve whose graph is given by y = y(z).

ds = +/dz? + dy? = dz\/1 + §? where y= %

e The [[y] length of the curve between points P; and P is

lly] = /IQ dzy/1+ 92
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e It is clear that {[y] is minimized when the path is a straight line. But how does one prove this?



We will be interested in the minimum/maximum, i.e. the extremum of functionals.
For a function f(z), we know that % = 0 gives an extremum:

[z + Az) — f(z)
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=0 Az : small “variation”

or we can simply write

0f = fle+Ax) = f(z) =0

Namely, we vary = by a small (infinitesimal) amount, Axz. If the change in f(z) vanishes at the linear
level, then f(x) is extremized (it is “stationary”).

e The situation is simlar for a functional F[y]. Vary the function y(z) by a small (infinitesimal) amount
as in the figure:
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the variation
is now a function

The change in F' must vanish for an extremum:

dF =Fly+dy]— Fly] =0

(here we ignore higher order, i.e. O(dy?) terms).

In general, we will consider functionals which depend on y, ¥, and x. They take the form

Fll= [ dr L@, i), )

Our previous example [[y] had this form (L did not explicitly depend on y(x)).



