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1 Many particles

1.1 Conservative forces

1.1.1 External forces

Assume external forces are conservative:

~F
(e)
i = −~∇iVi(~ri)

where ~∇i is the gradient with respect to ~ri.

The work done by external forces:

Wext =
∑
i

∫ 2

1

~F
(e)
i · d~ri = −

∑
i

∫ 2

1

d~ri · ~∇iVi = −
∑
i

Vi|21 =
∑
i

(Vi(1)− Vi(2))

1.1.2 Internal forces

Assuming the strong law of action and reaction, the force on particle i exerted by particle j can be written

as:
~Fij = r̂ijfij r̂ij =

~rij
|~rij |

~rij = ~ri − ~rj

and fij = fji is some scalar function.

• Now if fij depends only on the relative distance |~rij | (we will assume this henceforth), then ~Fij is

automatically conservative.

Proof:

Define the potential

Vji ≡
∫ |~rji|
0

dρ fji(ρ)

Then by the chain rule

−~∇iVji = −fji(|~rji|)~∇i|~rji|

Here
~∇i|~rji| = ~∇i

√
(~rj − ~ri) · (~rj − ~ri) = − ~rj − ~ri√

(~rj − ~ri) · (~rj − ~ri)
= −r̂ji

This means that

−~∇iVji = +r̂jifji(|~rji|) = ~Fji

Q.E.D.
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Remark: We have Vij = Vji. Then the stong law ~Fij = −~Fji comes from antisymmetry of

~∇i|~rij | = ~∇i|~ri − ~rj | = −~∇j |~ri − ~rj | = −~∇j |~rij |

Let us now compute the work done by internal forces.

Wint =
∑
i

d~ri · ~F (int)
i =

∑
i,j

∫
d~ri · ~Fji = −

∑
i,j

∫
d~ri · ~∇iVji

Use Vij = Vji and relabel dummy variables (i↔ j) to get

Wint = −1

2

∑
i,j

∫
d~ri · ~∇iVji −

1

2

∑
i,j

∫
d~rj · ~∇jVji︸ ︷︷ ︸

−~∇iVji

= −1

2

∑
i,j

∫
(d~ri − d~rj) · ~∇iVji

Now we can define
~∇iVji(|~rij |) =

∂

∂~ri
Vji(|~rij |) =

∂

∂~rij
Vji(|~rij |) ≡ ~∇ijVji

to write

Wint = −1

2

∑
i,j

∫
d~rij · ~∇ijVji = −1

2

∑
i,j

Vij

2

1

Including the external part, the total work is

W = Wext +Wint = −

∑
i

Vi +
1

2

∑
i,j

Vij

2

1

This is independent of the path (as in the single-particle case).

Recall that W = [
∑

i Ti]
2
1
. Hence, the total energy E is conserved:

E =
∑
i

Ti +
∑
i

Vi +
1

2

∑
i,j

Vij︸ ︷︷ ︸
total potential energy

The last term (the internal potential energy) can also be written as 1
2

∑
i,j Vij =

∑
i<j Vij .
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1.2 Rigid bodies

A rigid body is a system of particles for which |~rij | = const.

• For a rigid body, the internal potential energy is constant in time.

Hence, no work is done by internal forces.

• A rigid body is an example for a holonomic constraint. Such constraints are of the form

fK(~r1, . . . , ~rN , t) = 0

2 Lagrangian mechanics

2.1 Calculus of variations

A functional is a function of a function.

Given a function y(x), a number is determined: F [y].

2.1.1 Example: length of a curve

In this example, the functional is the length of a curve whose graph is given by y = y(x).

ds =
√
dx2 + dy2 = dx

√
1 + ẏ2 where ẏ ≡ dy

dx

• The l[y] length of the curve between points P1 and P2 is

l[y] =

∫ x2

x1

dx
√

1 + ẏ2

• It is clear that l[y] is minimized when the path is a straight line. But how does one prove this?
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We will be interested in the minimum/maximum, i.e. the extremum of functionals.

For a function f(x), we know that df
dx = 0 gives an extremum:

f(x+ ∆x)− f(x)

∆x
= 0 ∆x : small “variation”

or we can simply write

δf ≡ f(x+ ∆x)− f(x) = 0

Namely, we vary x by a small (infinitesimal) amount, ∆x. If the change in f(x) vanishes at the linear

level, then f(x) is extremized (it is “stationary”).

• The situation is simlar for a functional F [y]. Vary the function y(x) by a small (infinitesimal) amount

as in the figure:

The change in F must vanish for an extremum:

δF ≡ F [y + δy]− F [y] = 0

(here we ignore higher order, i.e. O(δy2) terms).

In general, we will consider functionals which depend on y, ẏ, and x. They take the form

F [y] =

∫ x2

x1

dxL (y(x), ẏ(x), x)

Our previous example l[y] had this form (L did not explicitly depend on y(x)).
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