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1 Examples of conservative systems

1.1 Particle in a gravitational field

V = +mgz

T =
1

2
m~v2 =

m

2

(
ẋ2 + ẏ2 + ż2

)
• Total energy:

E = T + V =
m

2

(
ẋ2 + ẏ2 + ż2

)
+mgz (1)

• Equation of motion (Newton’s 2nd law);

~̇p = ~F = −∂V
∂~r

=


mẍ = 0

mÿ = 0

mz̈ = −mg

From which we have 
ẍ = 0

ÿ = 0

z̈ = −g
(2)

These can be integrated. Then we get
ẋ(t) = const = ẋ(0)

ẏ(t) = const = ẏ(0)

ż(t) = −gt+ const = −gt+ ż(0)

(3)
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Integrate again: 
x(t) = ẋ(0)t+ x(0)

y(t) = ẏ(0)t+ y(0)

z(t) = − 1
2gt

2 + ż(0)t+ z(0)

(4)

As a check, one can plug these results back into the total energy in (1). It is easy to show that E is

independent of t, i.e. energy is conserved.

1.2 Application of energy conservation: Freely falling particle

• Initially (at t = 0), the particle is at rest.

• At time t∗ the particle hits the ground with velocity v∗.

Let us determine v∗. Compute the initial and final total energies:

E(t = 0) = T (t = 0) + V (t = 0) = 0 +mgd

E(t∗) = T (t∗) + V (t∗) =
1

2
mv2∗ + 0

Using energy conservation, i.e. E(0) = E(t∗) we get

mgd =
1

2
mv2∗

which gives

v∗ =
√

2gd

To find t∗, energy conservation is not enough. Using the previous result,

z(t∗) = −1

2
gt2∗ + ż(0)︸︷︷︸

=0

t∗ + z(0)︸︷︷︸
=d

0 = −1

2
gt2∗ + d

from which we get
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t∗ =

√
2d

g

This formula is independent of the particle mass m (as Galilei noted).

In some systems, we can also use conservation of (angular) momentum to solve problems (see Exercise

Class and Homework).

1.3 Another example for a conservative system: Harmonic oscillator

F = −kx, V =
1

2
kx2

E = T + V =
1

2
mẋ2 +

1

2
kx2

The equation of motion is:

mẍ = −dV
dx

= −kx

ẍ = − k
m
x ≡ −ω2x, ω ≡

√
k

m

What is this ω frequency? Let’s see the solution:

x(t) = A cosωt+B sinωt

This gives for the initial position and velocity:

x(0) = A

ẋ(0) = Bω

We can express A and B and get,

x(t) = x(0) cosωt+
ẋ(0)

ω
sinωt
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Let us calculate the energy as well. For this we will need the velocity which we can calculate from x(t):

ẋ(t) = −ωx(0) sinωt+ ẋ(0) cosωt

E(t) =
1

2
m [−ωx(0) sinωt+ ẋ(0) cosωt]

2
+

1

2
k

[
x(0) cosωt+

ẋ(0)

ω
sinωt

]2

=
1

2
x(0)2

(
mω2 sin2 ωt+ k cos2 ωt

)
+

1

2
ẋ(0)2

(
m cos2 ωt+

k

ω2
sin2 ωt

)
+ x(0)ẋ(0)

(
−mω +

k

ω

)
cosωt sinωt

E(t) =
k

2
x(0)2 +

m

2
ẋ(0)2 =

k

2
(A2 +B2) = const

Independent of t, i.e. energy is conserved!

1.3.1 The quadratic potential

V =
1

2
kx2

x(t) = A cosωt+B sinωt = a cos(ωt+ α)

E =
k

2
(A2 +B2) =

k

2
a2

where a ≡
√
A2 +B2.

The system oscillates back and forth over the values of x for which E − V (x) ≥ 0. This observation

generalizes to other cases.
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1.4 A qualitative study of motion from the potential (in one dimension)

E =
1

2
m~v2 + V (~r)

1

2
m~v2 = E − V ≥ 0

Note: E − V = 0 if and only if ~v = 0.

By looking at the shape of the potential, we can qualitatively tell how a particle moves.

Consider the one-dimensional case:

Let’s look at different cases:

E = E3 E3 − V ≥ 0 only for a ≤ x ≤ b. Finite oscillatory motion between x = a and x = b.

These two points are called turning points.

E = E2 E2 − V ≥ 0 only at x = c where v = 0 (static system).

x = c is called an equilibrium position. Note: V ′(c) = 0.

E = E1 E1 < V for all x. No physical motion is possible.
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1.5 Stable and unstable equilibrium points

• Equilibrium position ⇔ V ′(x) = 0 for some x.

If V (x) has a (local) minimum there (V ′′(x) > 0) ⇒ Stable equilibrium

If V (x) has a (local) maximum there (V ′′(x) < 0) ⇒ Unstable equilibrium

• The stability is related to what happens if one perturbs the system
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