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1 Examples of conservative systems

1.1 Particle in a gravitational field
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e Total energy:
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e Equation of motion (Newton’s 2nd law);
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From which we have
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These can be integrated. Then we get

&(t) = const = %(0)
y(t) = const = y(0)
2(t) = —gt + const = —gt + 2(0)



Integrate again:

z(t) = (0)t + x(0)
y(t) = 9(0)t +y(0) (4)
2(t) = —39t* + 2(0)t + 2(0)

As a check, one can plug these results back into the total energy in (1). It is easy to show that E is

independent of ¢, i.e. energy is conserved.

1.2 Application of energy conservation: Freely falling particle
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e Initially (at ¢ = 0), the particle is at rest.
e At time ¢, the particle hits the ground with velocity v,.

Let us determine v,. Compute the initial and final total energies:

E(t=0)=T({t=0)+V(t=0)=0+mgd
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Using energy conservation, i.e. E(0) = E(t.) we get
1
mgd = imvf
which gives
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To find ¢, energy conservation is not enough. Using the previous result,

2(t) = —Lgt2 4 5(0)t. + 2(0)
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from which we get
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This formula is independent of the particle mass m (as Galilei noted).

In some systems, we can also use conservation of (angular) momentum to solve problems (see Exercise
Class and Homework).

1.3 Another example for a conservative system: Harmonic oscillator

equilibrium positon
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The equation of motion is:

What is this w frequency? Let’s see the solution:

z(t) = Acoswt + Bsinwt

This gives for the initial position and velocity:

z(0)=A
%(0) = Bw
We can express A and B and get,
(0
x(t) = z(0) coswt + #0) sin wt
w



Let us calculate the energy as well. For this we will need the velocity which we can calculate from z(t):

#(t) = —wz(0) sinwt + &(0) coswt

: 2
E(t) = %m [—wz(0) sinwt + &(0) cos wt]* + %k [9:(0) coswt + :cg)) sin wt]

1 1 k k
= §x(0)2 (mw® sin® wt + k cos® wt) + 59&(0)2 (m cos? wt + — sin? wt) + z(0)x(0) (—mw + ) coswt sin wt
w w

k k
B(t) = 52(0)* + T(0)? = 5 (A% + BY) = const
Independent of ¢, i.e. energy is conserved!
1.3.1 The quadratic potential
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where a = A% + B2.

The system oscillates back and forth over the values of x for which £ — V(x) > 0. This observation
generalizes to other cases.



1.4 A qualitative study of motion from the potential (in one dimension)
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Note: £ —V =0 if and only if ¢ = 0.
By looking at the shape of the potential, we can qualitatively tell how a particle moves.

Consider the one-dimensional case:
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Let’s look at different cases:

E3 —V >0 only for a <z <b. Finite oscillatory motion between z = a and = = b.

These two points are called turning points.

E=F, Es —V >0 only at © = ¢ where v = 0 (static system).

x = c is called an equilibrium position. Note: V'(¢) = 0.

E=F; FE, <V for all . No physical motion is possible.



1.5 Stable and unstable equilibrium points

e Equilibrium position < V’(x) = 0 for some x.

If V(z) has a (local) minimum there (V(z) >0) = Stable equilibrium
If V(x) has a (local) maximum there (V”(x) <0) = Unstable equilibrium

e The stability is related to what happens if one perturbs the system
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