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0.1 Newton’s Laws of Motion

1st law: Objects remain at rest or move at constant velocity unless acted upon by a force (inertia)

2nd law: ~̇p = ~F

3rd law: ~F12 = −~F21 (action-reaction)

0.2 Angular momentum

The angular momentum of a particle with ~p about point “0”

~L ≡ ~r × ~p

This ~L is about 0. The angular momentum about some other ~r0 is

~L ≡ (~r − ~r0)× ~p
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• Components:

~r × ~p =

∣∣∣∣∣∣
x̂ ŷ ẑ

x y z

px py pz

∣∣∣∣∣∣ = x̂(ypz − zpy) + ŷ(zpx − xpz) + ẑ(xpy − ypx)

Thus,
~L = (ypz − zpy, zpx − xpz, xpy − ypx)

Or, if we use (x1, x2, x3) and (p1, p2, p3) instead,

L1 = x2p3 − x3p2

L2 = x3p1 − x1p3

L3 = x1p2 − x2p1

The relations are cyclic.

• Note: ~p = m~v is sometimes called linear momentum.

0.2.1 Example: Constant revolution

~r = R(cosφ, sinφ, 0)

~v = v(− sinφ, cosφ, 0)

~p = mv(− sinφ, cosφ, 0)

~L = ~r×~p = Rmv
(
0, 0, cos2 φ+ sin2 φ

)
= (0, 0, Rmv)

• More compactly,

Li =

3∑
j=1

3∑
k=1

εijkxjpk where i = 1, 2, 3

Here εijk is the Levi-Civita symbol, or “ε-symbol”. It is totally antisymmetric, and ε123 = +1.

ε123 = ε231 = ε312 = +1

ε132 = ε213 = ε321 = −1
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while the other components are zero.

• Using the rule that repeated indices imply summation:

( ~A× ~B)i = εijkAjBk

Li = εijkrjpk

• One can show that ~r × ~p = −~p× ~r.

~L · ~r = ~L · ~p = 0 ⇒ ~L ⊥ ~r, ~L ⊥ ~p

~L is orthogonal to the plane spanned by ~r and ~p.

0.3 Time evolution of ~L

d~L

dt
=

d

dt
(~r × ~p) = ~̇r × ~p︸︷︷︸

m~̇r

+~r × ~̇p︸︷︷︸
~F

Since ~̇r × ~̇r = 0, we get

~̇L = ~r × ~F ≡ ~τ

~τ is the moment of force about “0”, or torque.

3



0.4 Conservation of angular momentum

If torque is zero, ~r × ~F = 0 (here ~F is the total force) ⇒ ~̇L = 0, which means

~L = const.

i.e. angular momentum is conserved.

0.4.1 Example: Central force

• Let the force be

~F (~r) = f(r)r̂, r = |~r|

where f(r) is some function.

Then,

~r × ~F = f~r × r̂ = 0 ⇒ ~̇L = 0

i.e. the angular momentum is conserved.

• Gravitational force is (approximately) central:

~F = −GMm

r2
r̂

~L = ~r × ~p = const.

0.4.2 Consequences of conserved angular momentum

• ~L is constant and always perpendicular to ~r.

Hence, motion lies in a plane.
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• Kepler’s 2nd law:

The line between the Sun and the planet sweeps equal areas in equal times.

Infinitesimal area:

dA =
1

2
(base)× (height) =

1

2
|~r| × |~r|dφ =

1

2
r2dφ

Let us divide by dt. We want to show that dA
dt = 1

2r
2 dφ
dt is constant.

On the other hand,

~L = ~r ×m~̇r

We can write

~̇r ≈ (~r + d~r)− ~r
dt

Using this we have

~Ldt = ~r ×m ((~r + d~r)− ~r)

We drop the second term (since ~r × ~r = 0)

~Ldt = ~r ×m(~r + d~r)

Take the absolute value

|~Ldt| = m|~r| |~r + d~r|︸ ︷︷ ︸
≈|~r|

sin dφ︸ ︷︷ ︸
≈dφ

≈ mr2dφ

Thus,

|~L| = mr2
dφ

dt

Since ~L is constant, dAdt = 1
2r

2 dφ
dt is also constant. QED
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0.5 Work

“Force applied throughout a distance is work,” i.e. W = F × d

What is the work done by the force ~F when a particle moves along a path P ?

W [P] =

∫
P
~F · d~r =

∫ t2

t1

~F · ~̇r dt

The force can depend on ~r, ~̇r, t:

Use Newton’s 2nd law ~F = ~̇p = m~̇v

W [P] =

∫ t2

t1

m~̇v · ~v dt =

∫ t2

t1

d

dt

(
1

2
m~v2

)
dt =

1

2
m~v2

∣∣∣∣
t=t2

− 1

2
m~v2

∣∣∣∣
t=t1

Define the kinetic energy

T ≡ 1

2
m~v2 =

~p2

2m

Then,

W = T2 − T1

i.e. the kinetic energy changes by the work done.
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0.6 Conservative force

The force ~F is said to be conservative if it can be expressed as

~F = −~∇V

where V (~r) is a scalar function called a potential.

• Note: because ~∇(const) = 0, we can always add an arbitrary constant to V without changing ~F (i.e.

can freely choose the zero level of V ).

• Newton’s 2nd law becomes:

~̇p = −~∇V

• If ~F is conservative, then the work done by ~F between points ~r1 and ~r2 is

W12 =

∫ ~r2

~r1

d~r · ~F = −
∫ ~r2

~r1

d~r · ~∇V = −V (~r2) + V (~r1)

by the fundamental theorem of calculus (which is
∫ 2

1
dx d

dxf = f2 − f1).

Thus, W12 is independent of the path!

• If ~r1 = ~r2 (i.e. closed path), then W = 0: no net work has been done.

• The converse is also true:

If work is independent of the path, then we can define a potential

V (~r) ≡ −
∫ ~r

~r0

d~r′ · ~F (~r′)

where ~r0 is some fixed reference point. Then this quantity will obey

∇V = −~F

again by the fundamental theorem of calculus. Hence, the force is conservative.
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0.7 Examples

0.7.1 Particle in a gravitational field

~F = (0, 0, −mg)

This can be derived from the potential:

V (~r) = +mgz

Indeed: −~∇V = (0, 0, −mg) = ~F .

0.7.2 Elastic force

Hooke’s law:

F = −k(x− x0)

This can be derived from the potential

V (x) =
1

2
k(x− x0)2

0.8 Energy conservation with conservative forces

For a conservative force

W = V1 − V2

We also saw that

W = T2 − T1

Thus,
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T1 + V1 = T2 + V2

which means that the total energy

E ≡ T + V =
~p2

2m
+ V (~r)

is conserved!

• One can prove conservation (t-independence) of E more directly:

Ė =
d

dt

(
~p2

2m
+ V (~r)

)
=

1

m
~p · ~̇p+ ~∇V · ~̇r = ~v · ~F + ~∇V · ~v = ~v ·

(
~F + ~∇V

)
︸ ︷︷ ︸
≡0 for a

conservative
system

= 0

• Mechanical systems whose energy is conserved are called conservative systems.
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